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3 Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Zaragoza,
50009 Zaragoza, Spain

E-mail: mdeleon@imaff.cfmac.csic.es, jcmarrer@ull.es and emf@unizar.es

Received 30 July 2004, in final form 7 April 2005
Published 1 June 2005
Online at stacks.iop.org/JPhysA/38/R241

Abstract
In some previous papers, a geometric description of Lagrangian mechanics on
Lie algebroids has been developed. In this topical review, we give a Hamiltonian
description of mechanics on Lie algebroids. In addition, we introduce the
notion of a Lagrangian submanifold of a symplectic Lie algebroid and we
prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be
described in terms of Lagrangian submanifolds of symplectic Lie algebroids.
The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal
with Lagrangian (Hamiltonian) functions not defined necessarily on tangent
(cotangent) bundles. Thus, we may apply our results to the projection of
Lagrangian (Hamiltonian) functions which are invariant under the action of a
symmetry Lie group. As a consequence, we obtain that Lagrange–Poincaré
(Hamilton–Poincaré) equations are the Euler–Lagrange (Hamilton) equations
associated with the corresponding Atiyah algebroid. Moreover, we prove
that Lagrange–Poincaré (Hamilton–Poincaré) equations are the local equations
defining certain Lagrangian submanifolds of symplectic Atiyah algebroids.

PACS numbers: 02.20.Sv, 02.40.Ma, 45.20.Jj
Mathematics Subject Classification: 17B66, 53D12, 70G45, 70H03, 70H05,
70H20

Contents

1. Introduction 242
2. Lie algebroids and Lagrangian mechanics 245

2.1. Some algebraic constructions in the category of Lie algebroids 245
2.2. Lagrangian mechanics on Lie algebroids 255

0305-4470/05/240241+68$30.00 © 2005 IOP Publishing Ltd Printed in the UK R241

http://dx.doi.org/10.1088/0305-4470/38/24/R01
http://stacks.iop.org/ja/38/R241


R242 Topical Review

3. Lie algebroids and Hamiltonian mechanics 258
3.1. The prolongation of a Lie algebroid over the vector bundle projection of the

dual bundle 258
3.2. The canonical symplectic section of Lτ ∗

E 260
3.3. The Hamilton equations 261
3.4. Complete and vertical lifts 262
3.5. Poisson bracket 264
3.6. The Legendre transformation and the equivalence between the Lagrangian and

Hamiltonian formalisms 265
3.7. The Hamilton–Jacobi equation 267

4. The canonical involution for Lie algebroids 269
5. Tulczyjew’s triple on Lie algebroids 274
6. The prolongation of a symplectic Lie algebroid 276
7. Lagrangian Lie subalgebroids in symplectic Lie algebroids 280
8. Lagrangian submanifolds, Tulczyjew’s triple and Euler–Lagrange (Hamilton)

equations 286
9. An application: Lagrangian submanifolds in prolongations of Atiyah algebroids and

Lagrange (Hamilton)–Poincaré equations 291
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1. Introduction

Lie algebroids have deserved a lot of interest in recent years. Since a Lie algebroid is a concept
which unifies tangent bundles and Lie algebras, one can suspect their relation with mechanics.
In his paper [50] Weinstein (see also the paper by Libermann [23]) developed a generalized
theory of Lagrangian mechanics on Lie algebroids and obtained the equations of motion, using
the linear Poisson structure on the dual of the Lie algebroid and the Legendre transformation
associated with the Lagrangian L, when L is regular. In that paper, he also asks the question
whether it is possible to develop a formalism similar on Lie algebroids to Klein’s formalism
[19] in ordinary Lagrangian mechanics. This task was finally done by Martı́nez [29] (see also
[3, 8, 30, 31, 40]). The main notion is that of prolongation of a Lie algebroid over a mapping,
introduced by Higgins and Mackenzie [17].

One could ask about the interest in generalizing classical mechanics on tangent and
cotangent bundles to Lie algebroids. However, it is not a mere academic exercise. Indeed, if
we apply our procedure to Atiyah algebroids we recover in a very natural way the Lagrange–
Poincaré and Hamilton–Poincaré equations. In this case, the Lagrangian and Hamiltonian
functions are not defined on tangent and cotangent bundles, but on the quotients by the
structure Lie group (see section 9 of this paper). This fact is a good motivation for our
study.

On the other hand, it is well known that Lagrangian submanifolds play an important role
in the geometrical description of several aspects related to classical and quantum mechanics.
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Thus, in [45, 46] Tulczyjew proved that it is possible to interpret the ordinary Lagrangian
and Hamiltonian dynamics as Lagrangian submanifolds of convenient special symplectic
manifolds. To do that, he introduced canonical isomorphisms which commute the tangent
and cotangent functors. This construction is the so-called Tulczyjew triple for classical
mechanics. Lagrangian submanifolds also arise in the reduction of Hamiltonian systems
with a symmetry Lie group. In fact, momentum functions for a symplectic action of a Lie
group are closely related to Lagrangian embeddings (see [48]). Hamilton–Jacobi theory
and Lagrangian submanifolds are also closely related. Indeed, a generalized local (global)
complete integral of the Hamilton–Jacobi equation for a Hamiltonian system, on the cotangent
bundle T ∗M of a manifold M, may be interpreted as a family of Lagrangian submanifolds
of T ∗M satisfying certain conditions (see [24]). On the other hand, intersection theory
of Lagrangian submanifolds can be used to obtain results on boundary value problems for
Hamiltonian flows (see [48]). In another direction, it is well known that Lagrangian foliations
play an important role in the geometric quantization procedure of a quantizable symplectic
manifold (see [22, 43]). In addition, symplectic groupoids and Lagrangian submanifolds
are closely related (see [9]). We remark that symplectic groupoids may be used to integrate
Poisson brackets (see [11]) and that the integrability problem for Poisson brackets is relevant
to various quantization schemes (see [4, 21, 49]).

The purpose of this review is to give a description of Hamiltonian and Lagrangian
dynamics on Lie algebroids in terms of Lagrangian submanifolds of symplectic Lie algebroids.
The paper is organized as follows. In section 2.1, we recall the notion of prolongation Lf E

of a Lie algebroid τ : E −→ M over a mapping f : M ′ −→ M; when f is just the canonical
projection τ , then LτE will play the role of the double tangent bundle. We also consider
action Lie algebroids, which permit us to induce a Lie algebroid structure on the pull-back
of a Lie algebroid by a mapping. The notion of quotient Lie algebroids is also discussed,
and in particular, we consider Atiyah algebroids. In section 2.2 we develop the Lagrangian
formalism on the prolongation LτE starting with a Lagrangian function L : E −→ R.
Indeed, one can construct the Poincaré–Cartan 1- and 2-sections (i.e. θL ∈ �((LτE)∗) and
ωL ∈ �(�2(LτE)∗), respectively) using the geometry of LτE provided by the Euler section
� and the vertical endomorphism S. The dynamics is given by a SODE ξ of LτE (that is,
a section ξ of LτE such that Sξ = �) satisfying iξωL = dLτ EEL, where EL is the energy
associated with L (throughout this review dE denotes the differential of the Lie algebroid E).
As in classical mechanics, L is regular if and only if ωL is a symplectic section, and in this case
ξ = ξL is uniquely defined and a SODE. Its solutions (curves in E) satisfy the Euler–Lagrange
equations for L.

Sections 3.1–3.4 are devoted to developing a Hamiltonian description of mechanics on Lie
algebroids. Now, the role of the cotangent bundle of the configuration manifold is played by
the prolongation Lτ ∗

E of E along the projection τ ∗ : E∗ −→ M , which is the dual bundle of E.
We can construct the canonical Liouville 1-section λE and the canonical symplectic 2-section
	E on Lτ ∗

E. Theorem 3.4 and corollary 3.6 are the Lie algebroid version of the classical
results concerning the universality of the standard Liouville 1-form on cotangent bundles.
Given a Hamiltonian function H : E∗ −→ R, the dynamics are obtained solving the equation
iξH

	E = dLτ∗
EH with the usual notation. The solutions of ξH (curves in E∗) are those of

the Hamilton equations for H. The Legendre transformation LegL : E −→ E∗ associated
with a Lagrangian L induces a Lie algebroid morphism LLegL : LτE −→ Lτ ∗

E, which
permits in the regular case to connect Lagrangian and Hamiltonian formalisms as in classical
mechanics. In section 3.5 we develop the corresponding Hamilton–Jacobi theory; we prove
that the function S : M −→ R satisfying the Hamilton–Jacobi equation dE(H ◦ dES) = 0 is
just the action for L.
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As is well known, there is a canonical involution σTM : TTM −→ TTM defined by
Kobayashi [20]. In section 4, we prove that for an arbitrary Lie algebroid τ : E −→ M there
is a unique Lie algebroid isomorphism σE : LτE −→ ρ∗(TE) such that σ 2

E = id, where LτE

is the prolongation of E by τ , and ρ∗(TE) is the pull-back of the tangent bundle prolongation
T τ : TE −→ TM via the anchor mapping ρ : E −→ TM (theorem 4.4). Note that, as
manifolds, ρ∗(TE) = LτE and that, in addition, ρ∗(TE) carries a Lie algebroid structure over
E since the existence of an action of the tangent Lie algebroid T τ : TE −→ TM on τ . When
E is the standard Lie algebroid TM we recover the standard canonical involution.

Section 5 is devoted to extending Tulczyjew’s construction. First we define a canonical
vector bundle isomorphism �E∗ : Lτ ∗

E −→ (Lτ ∗
E)∗ which is given using the canonical

symplectic section of Lτ ∗
E. Next, using the canonical involution σE one defines a canonical

vector bundle isomorphism AE : Lτ ∗
E −→ (LτE)∗. Both vector bundle isomorphims extend

the so-called Tulczyjew triple for classical mechanics.
In section 6 we introduce the notion of a symplectic Lie algebroid. The definition is

the obvious one: 	 is a symplectic section on a Lie algebroid τ : E −→ M if it induces a
nondegenerate bilinear form on each fibre of E and, in addition, it is dE-closed (dE	 = 0).
In this case, the prolongation LτE is symplectic too. The latter result extends the well-known
result which proves that the tangent bundle of a symplectic manifold is also symplectic.

In section 7 we consider Lagrangian Lie subalgebroids of symplectic Lie algebroids; the
definition is of course pointwise. This definition permits us to consider, in section 8, the notion
of a Lagrangian submanifold of a symplectic Lie algebroid: a submanifold i : S −→ E is
a Lagrangian submanifold of the symplectic Lie algebroid τ : E −→ M with anchor map
ρ : E −→ TM if the following conditions hold:

• dim(ρ(EτS(x)) + (Txτ
S)(TxS)) does not depend on x, for all x ∈ S;

• the Lie subalgebroid LτS

E of the symplectic Lie algebroid LτE is Lagrangian;

here τS = τ ◦i : S −→ M . The classical results about Lagrangian submanifolds in symplectic
geometry are extended to the present context in a natural way. Also, we generalize the
interpretation of Tulzcyjew; for instance, given a Hamiltonian H : E∗ −→ R we prove
that SH = ξH (E∗) is a Lagrangian submanifold of the symplectic extension Lτ ∗

E and
that there exists a bijective correspondence between the admissible curves in SH and the
solutions of the Hamilton equations for H. For a Lagrangian L : E −→ R we prove that
SL = (

A−1
E ◦ dLτ EL

)
(E) is a Lagrangian submanifold of Lτ ∗

E and, furthermore, that there
exists a bijective correspondence between the admissible curves in SL and the solutions of the
Euler–Lagrange equations for L. In addition, we deduce that for a hyperregular Lagrangian
L, then SξL

= ξL(E) is a Lagrangian submanifold of the symplectic extension LτE, and,
moreover, we have that LLegL

(
SξL

) = SL = SH , for H = EL ◦ Leg−1
L .

Sections 9.1–9.4 are devoted to some applications. Consider a (left) principal bundle
π : Q −→ M with structural group G. The Lie algebroid τQ|G : TQ/G −→ M is called
the Atiyah algebroid associated with π : Q −→ M . One can prove that the prolongation
LτQ|G(TQ/G) is isomorphic to the Atiyah algebroid associated with the principal bundle
πT : TQ −→ TQ/G, and, moreover, the dual vector bundle of LτQ|G(TQ/G) is isomorphic
to the quotient vector bundle of πTQ : T ∗(TQ) −→ TQ by the canonical lift action of G
on T ∗(TQ). Similar results are obtained for cotangent bundles. In section 9.2 (respectively,
section 9.3), we prove that the solutions of the Hamilton–Poincaré equations for a G-invariant
Hamiltonian function H : T ∗Q −→ R (resp. the Lagrange–Poincaré equations for a G-
invariant Lagrangian L : TQ −→ R) are just the solutions of the Hamilton equations (resp.
the Euler–Lagrange equations) on T ∗Q/G for the reduced Hamiltonian h : T ∗Q/G −→ R

(resp. on TQ/G for the reduced Lagrangian l : TQ/G −→ R). Moreover, in sections 9.2
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and 9.3 all these equations are reinterpreted as those defining the corresponding Lagrangian
submanifolds. In addition, in section 9.4 we show how our formalism allows us to obtain
Wong’s equations in a direct way.

Finally, in section 10 we discuss some open problems and the future work.
Manifolds are real, paracompact and C∞. Maps are C∞. Sum over crossed repeated

indices is understood.

2. Lie algebroids and Lagrangian mechanics

2.1. Some algebraic constructions in the category of Lie algebroids

Let E be a vector bundle of rank n over a manifold M of dimension m and τ : E → M be the
vector bundle projection. Denote by �(E) the C∞(M)-module of sections of τ : E → M . A
Lie algebroid structure ([[·, ·]], ρ) on E is a Lie bracket [[·, ·]] on the space �(E) and a bundle
map ρ : E → TM, called the anchor map, such that if we also denote by ρ : �(E) → X(M)

the homomorphism of C∞(M)-modules induced by the anchor map then

[[X, f Y ]] = f [[X, Y ]] + ρ(X)(f )Y,

for X, Y ∈ �(E) and f ∈ C∞(M). The triple (E, [[·, ·]], ρ) is called a Lie algebroid over M
(see [25]).

If (E, [[·, ·]], ρ) is a Lie algebroid over M, then the anchor map ρ : �(E) → X(M) is a
homomorphism between the Lie algebras (�(E), [[·, ·]]) and (X(M), [·, ·]).

Trivial examples of Lie algebroids are real Lie algebras of finite dimension and the tangent
bundle TM of an arbitrary manifold M.

Let (E, [[·, ·]], ρ) be a Lie algebroid over M. We consider the generalized distribution FE

on M whose characteristic space at a point x ∈ M is given by

FE(x) = ρ(Ex)

where Ex is the fibre of E over x. The distribution FE is finitely generated and involutive.
Thus, FE defines a generalized foliation on M in the sense of Sussmann [44]. FE is the Lie
algebroid foliation on M associated with E.

If (E, [[·, ·]], ρ) is a Lie algebroid, one may define the differential of E, dE : �(∧kE∗) →
�(∧k+1E∗), as follows,

dEµ(X0, . . . , Xk) =
k∑

i=0

(−1)iρ(Xi)(µ(X0, . . . , X̂i , . . . , Xk))

+
∑
i<j

(−1)i+jµ([[Xi,Xj ]], X0, . . . , X̂i , . . . , X̂j , . . . , Xk), (2.1)

for µ ∈ �(∧kE∗) and X0, . . . , Xk ∈ �(E). It follows that (dE)2 = 0. Moreover, if X is a
section of E, one may introduce, in a natural way, the Lie derivative with respect to X, as the
operator LE

X : �(∧kE∗) → �(∧kE∗) given by

LE
X = iX ◦ dE + dE ◦ iX.

Note that if E = TM and X ∈ �(E) = X(M) then dTM and LTM
X are the usual differential

and the Lie derivative with respect to X, respectively.
If we take local coordinates (xi) on M and a local basis {eα} of sections of E, then we

have the corresponding local coordinates (xi, yα) on E, where yα(a) is the αth coordinate of
a ∈ E in the given basis. Such coordinates determine local functions ρi

α , C
γ

αβ on M which
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contain the local information of the Lie algebroid structure, and accordingly they are called
the structure functions of the Lie algebroid. They are given by

ρ(eα) = ρi
α

∂

∂xi
and [[eα, eβ ]] = C

γ

αβeγ .

These functions should satisfy the relations

ρj
α

∂ρi
β

∂xj
− ρ

j

β

∂ρi
α

∂xj
= ρi

γ C
γ

αβ (2.2)

and ∑
cyclic(α,β,γ )

[
ρi

α

∂Cν
βγ

∂xi
+ Cν

αµC
µ
βγ

]
= 0, (2.3)

which are usually called the structure equations.
If f ∈ C∞(M), we have that

dEf = ∂f

∂xi
ρi

αeα, (2.4)

where {eα} is the dual basis of {eα}. On the other hand, if θ ∈ �(E∗) and θ = θγ eγ it follows
that

dEθ =
(

∂θγ

∂xi
ρi

β − 1

2
θαCα

βγ

)
eβ ∧ eγ . (2.5)

In particular,

dExi = ρi
αeα, dEeα = − 1

2Cα
βγ eβ ∧ eγ .

On the other hand, if (E, [[·, ·]], ρ) and (E′, [[·, ·]]′, ρ ′) are Lie algebroids over M and M ′,
respectively, then a morphism of vector bundles (F, f ) of E on E′

M
f � M ′

τ

�

τ ′

�

E
F � E′

is a Lie algebroid morphism if

dE((F, f )∗φ′) = (F, f )∗(dE′
φ′), for all φ′ ∈ �(∧k(E′)∗) and for all k. (2.6)

Note that (F, f )∗φ′ is the section of the vector bundle ∧kE∗ → M defined by

((F, f )∗φ′)x(a1, . . . , ak) = φ′
f (x)(F (a1), . . . , F (ak)),

for x ∈ M and a1, . . . , ak ∈ Ex . We remark that (2.6) holds if and only if

dE(g′ ◦ f ) = (F, f )∗(dE′
g′), for g′ ∈ C∞(M ′),

dE((F, f )∗α′) = (F, f )∗(dE′
α′), for α′ ∈ �((E′)∗).

(2.7)

If M = M ′ and f = id : M → M then, it is easy to prove that the pair (F, id) is a
Lie algebroid morphism if and only if

F [[X, Y ]] = [[FX,FY ]]′, ρ ′(FX) = ρ(X)

for X, Y ∈ �(E).
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Other equivalent definitions of a Lie algebroid morphism may be found in [17]. Let
(E, [[·, ·]], ρ) be a Lie algebroid over M and E∗ be the dual bundle to E. Then, E∗ admits a
linear Poisson structure �E∗ , that is, �E∗ is a 2-vector on E∗ such that

[�E∗ ,�E∗ ] = 0

and if y and y ′ are linear functions on E∗, we have that �E∗(dy, dy ′) is also a linear function
on E∗. If (xi) are local coordinates on M, {eα} is a local basis of �(E) and (xi, yα) are the
corresponding coordinates on E∗ then the local expression of �E∗ is

�E∗ = 1

2
C

γ

αβyγ

∂

∂yα

∧ ∂

∂yβ

+ ρi
α

∂

∂yα

∧ ∂

∂xi
, (2.8)

where ρi
α and C

γ

αβ are the structure functions of E with respect to the coordinates (xi) and to
the basis {eα}. The Poisson structure �E∗ induces a linear Poisson bracket of functions on E∗

which we will denote by { , }E∗ . In fact, if F,G ∈ C∞(E∗) then

{F,G}E∗ = �E∗(dTE∗
F, dTE∗

G).

On the other hand, if f is a function on M then the associated basic function f v ∈ C∞(E∗)
defined by f is given by

f v = f ◦ τ ∗.

In addition, if X is a section of E then the linear function X̂ ∈ C∞(E∗) defined by X is given
by

X̂(a∗) = a∗(X(τ ∗(a∗))), for all a∗ ∈ E∗.

The Poisson bracket { , }E∗ is then characterized by the following relations,

{f v, gv}E∗ = 0, {X̂, gv}E∗ = (ρ(X)g)v and {X̂, Ŷ }E∗ = ̂[[X, Y ]], (2.9)

for X, Y ∈ �(E) and f, g ∈ C∞(M).
In local coordinates (xi, yα) on E∗ we have that

{xi, xj }E∗ = 0 {yα, xj }E∗ = ρj
α and {yα, yβ}E∗ = yγ C

γ

αβ,

(for more details, see [9, 10]).

2.1.1. The prolongation of a Lie algebroid over a smooth map. In this section, we will
recall the definition of the Lie algebroid structure on the prolongation of a Lie algebroid over
a smooth map. We will follow [17] (see section 1 in [17]).

Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension m and
f : M ′ → M be a smooth map.

We consider the subset Lf E of E × TM′ defined by

Lf E = {(b, v′) ∈ E × TM′/ρ(b) = (Tf )(v′)}
where Tf : TM′ → TM is the tangent map to f .

Denote by τf : Lf E → M ′ the map given by

τf (b, v′) = τM ′(v′),

for (b, v′) ∈ Lf E, τM ′ : TM′ → M ′ being the canonical projection. If x ′ is a point of M ′, it
follows that

(τ f )−1(x ′) = (Lf E)x ′ = {(b, v′) ∈ Ef (x ′) × Tx ′M ′/ρ(b) = (Tx ′f )(v′)}
is a vector subspace of Ef (x ′) ×Tx ′M ′, where Ef (x ′) is the fibre of E over the point f (x ′) ∈ M .
Moreover, if m′ is the dimension of M ′, one may prove that

dim(Lf E)x ′ = n + m′ − dim(ρ(Ef (x ′)) + (Tx ′f )(Tx ′M ′)).
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Thus, if we suppose that there exists c ∈ N such that

dim(ρ(Ef (x ′)) + (Tx ′f )(Tx ′M ′)) = c, for all x ′ ∈ M ′, (2.10)

then we conclude that Lf E is a vector bundle over M ′ with vector bundle projection
τf : Lf E → M ′.

Remark 2.1. If ρ and T (f ) are transversal, that is,

ρ(Ef (x ′)) + (Tx ′f )(Tx ′M ′) = Tf (x ′)M, for all x ′ ∈ M ′, (2.11)

then it is clear that (2.10) holds. Note that if E is a transitive Lie algebroid (that is, ρ is an
epimorphism of vector bundles) or f is a submersion, we deduce that (2.11) also holds.

Next, we will assume that condition (2.10) holds and we will describe the sections of the
vector bundle τf : Lf E → M ′.

Denote by f ∗E the pullback of E over f , that is,

f ∗E = {(x ′, b) ∈ M ′ × E/f (x ′) = τ(b)}.
f ∗E is a vector bundle over M ′ with vector bundle projection

pr1 : f ∗E → M ′, (x ′, b) ∈ f ∗E → x ′ ∈ M ′.
Furthermore, if σ is a section of pr1 : f ∗E → M ′ then

σ = h′
i (Xi ◦ f ),

for suitable h′
i ∈ C∞(M ′) and Xi ∈ �(E).

On the other hand, if X∧ is a section of the vector bundle τf : Lf E → M ′, one may
prove that there exists a unique σ ∈ �(f ∗E) and a unique X′ ∈ X(M ′) such that

(Tx ′f )(X′(x ′)) = ρ(σ(x ′)), for all x ′ ∈ M ′, (2.12)

and X∧(x ′) = (σ (x ′),X′(x ′)). Thus,

X∧(x ′) = (h′
i (x

′)Xi(f (x ′)),X′(x ′))
for suitable h′

i ∈ C∞(M ′),Xi ∈ �(E) and, in addition,

(Tx ′f )(X′(x ′)) = h′
i (x

′)ρ(Xi)(f (x ′)).
Conversely, if σ ∈ �(f ∗E) and X′ ∈ X(M ′) satisfy condition (2.12) then the map
X∧ : M ′ → Lf E given by

X∧(x ′) = (σ (x ′),X′(x ′)), for all x ′ ∈ M ′,
is a section of the vector bundle τf : Lf E → M ′.

Now, we consider the homomorphism of C∞(M ′)-modules ρf : �(Lf E) → X(M ′) and
the Lie bracket [[·, ·]]f : �(Lf E) × �(Lf E) → �(Lf E) on the space �(Lf E) defined as
follows. If X∧ ≡ (σ,X′) ∈ �(f ∗E) × X(M ′) is a section of τf : Lf E → M ′ then

ρf (X∧) = X′ (2.13)

and if (h′
i (Xi ◦ f ), X′) and (s ′

j (Yj ◦ f ), Y ′) are two sections of τf : Lf E → M ′, with
h′

i , s
′
j ∈ C∞(M ′),Xi, Yj ∈ �(E) and X′, Y ′ ∈ X(M ′), then

[[(h′
i (Xi ◦ f ), X′), (s ′

j (Yj ◦ f ), Y ′)]]f = (h′
i s

′
j ([[Xi, Yj ]] ◦ f )

+ X′(s ′
j )(Yj ◦ f ) − Y ′(h′

i )(Xi ◦ f ), [X′, Y ′]). (2.14)

The pair ([[·, ·]]f , ρf ) defines a Lie algebroid structure on the vector bundle τf : Lf E → M ′

(see [17]).
(Lf E, [[·, ·]]f , ρf ) is the prolongation of the Lie algebroid E over the map f (the inverse-

image Lie algebroid of E over f in the terminology of [17]).
On the other hand, if pr1 : Lf E → E is the canonical projection on the first factor then the

pair (pr1, f ) is a morphism between the Lie algebroids (Lf E, [[·, ·]]f , ρf ) and (E, [[·, ·]], ρ)

(for more details, see [17]).
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2.1.2. Action Lie algebroids. In this section, we will recall the definition of the Lie algebroid
structure of an action Lie algebroid. We will follow again [17].

Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and f : M ′ → M be a smooth
map. Denote by f ∗E the pull-back of E over f . f ∗E is a vector bundle over M ′ whose vector
bundle projection is the restriction to f ∗E of the first canonical projection pr1 : M ′×E → M ′.

However, f ∗E is not, in general, a Lie algebroid over M ′. Now, suppose that
� : �(E) → X(M ′) is an action of E on f , that is, � is a R-linear map which satisfies
the following conditions:

(i) �(hX) = (h ◦ f )�X,
(ii) �[[X, Y ]] = [�X,�Y ],

(iii) �X(h ◦ f ) = ρ(X)(h) ◦ f ,

for X, Y ∈ �(E) and h ∈ C∞(M). The action � allows us to introduce a homomorphism of
C∞(M ′)-modules ρ� : �(f ∗E) → X(M ′) and a Lie bracket [[·, ·]]� : �(f ∗E) × �(f ∗E) →
�(f ∗E) on the space �(f ∗E) defined as follows. If σ = h′

i (Xi ◦ f ) and γ = s ′
j (Yj ◦ f ) are

sections of f ∗E, with h′
i , s

′
j ∈ C∞(M ′) and Xi, Yj ∈ �(E), then

ρ�(σ) = h′
i�(Xi),

[[σ, γ ]]� = h′
i s

′
j ([[Xi, Yj ]] ◦ f ) + h′

i�(Xi)(s
′
j )(Yj ◦ f ) − s ′

j�(Yj )(h
′
i )(Xi ◦ f ).

The pair ([[·, ·]]�, ρ�) defines a Lie algebroid structure on f ∗E. The corresponding Lie
algebroid is denoted by E � M ′ or E � f and we call it an action Lie algebroid (for more
details, see [17]).

Remark 2.2. Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M.

(i) A Lie subalgebroid is a morphism of Lie algebroids j : F → E, i : N → M such that
the pair (j, i) is a monomorphism of vector bundles and i is an injective inmersion (see
[17]).

(ii) Suppose that f : M ′ → M is a smooth map and that � : �(E) → X(M ′) is an action
of E on f . The anchor map ρ� of f ∗E induces a morphism between the vector bundles
f ∗E and TM′ which we will also denote by ρ� . Thus, if Lf E is the prolongation of E
over f , we may introduce the map

(idE, ρ�) : f ∗E → Lf E,

given by

(idE, ρ�)(x ′, a) = (a, ρ�(x ′, a)),

for (x ′, a) ∈ (f ∗E)x ′ ⊆ {x ′} × Ef (x ′), with x ′ ∈ M ′. Moreover, if idM ′ : M ′ → M ′ is the
identity map then it is easy to prove that the pair ((idE, ρ�), idM ′) is a Lie subalgebroid.
In fact, the map (idE, ρ�) : f ∗E → Lf E is a section of the canonical projection

(idE, τM ′) : Lf E → f ∗E

defined by

(idE, τM ′)(a,Xx ′) = (x ′, a)

for (a,Xx ′) ∈ (Lf E)x ′ ⊆ Ef (x ′) × Tx ′M ′, with x ′ ∈ M ′.
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2.1.3. Quotient Lie algebroids by the action of a Lie group. Let π : Q → M be a principal
bundle with structural group G. Denote by φ : G × Q → Q the free action of G on Q.

Now, suppose that Ẽ is a vector bundle over Q of rank n, with vector bundle projection
τ̃ : Ẽ → Q and that φ̃ : G × Ẽ → Ẽ is an action of G on Ẽ such that:

(i) For each g ∈ G, the pair (φ̃g, φg) induces an isomorphism of vector bundles. Thus, the
following diagram

Q
φg � Q

τ̃

�

τ̃

�

Ẽ
φ̃g � Ẽ

is commutative and for each q ∈ Q, the map

φ̃g : Ẽq → Ẽφg(q)

is a linear isomorphism between the vector spaces Ẽq and Ẽφg(q).
(ii) Ẽ is covered by the ranges of equivariant charts, that is, around each q0 ∈ Q there is a

π -satured open set Ũ = π−1(U), where U ⊆ M is an open subset with x0 = π(q0) ∈ U

and a vector bundle chart ϕ̃ : Ũ × Rn → τ̃−1(Ũ) for Ẽ which is equivariant in the sense
that

ϕ̃(φg(q), p) = φ̃g(ϕ̃(q, p))

for all g ∈ G, q ∈ Ũ and p ∈ Rn.

Under conditions (i) and (ii), the orbit set E = Ẽ/G has a unique vector bundle structure
over M = Q/G of rank n such that the pair (π̃, π) is a morphism of vector bundles and
π̃ : Ẽ → E = Ẽ/G is a surjective submersion, where π̃ : Ẽ → E = Ẽ/G is the canonical
projection. The vector bundle projection τ = τ̃ |G : E → M of E is given by

τ [ũ] = [τ̃ (ũ)], for ũ ∈ Ẽ.

Moreover, if q ∈ Q and π(q) = x then the map

π̃|Ẽq
: Ẽq → Ex, ũ → [ũ]

is a linear isomorphism between the vector spaces Ẽq and Ex .
We call (E, τ,M) the quotient vector bundle of (Ẽ, τ̃ ,Q) by the action of G (see [25]).

On the other hand, a section X̃ : Q → Ẽ of τ̃ : Ẽ → Q is said to be invariant if the map X̃ is
equivariant, that is, the following diagram

Q
X̃ � Ẽ

φg

�

φ̃g

�

Q
X̃ � Ẽ

is commutative, for all g ∈ G.
We will denote by �(Ẽ)G the set of invariant sections of the vector bundle τ̃ : Ẽ → Q.

�(Ẽ)G is a C∞(M)-module where

f X̃ = (f ◦ π)X̃, for f ∈ C∞(M) and X̃ ∈ �(Ẽ)G.
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Furthermore, there exists an isomorphism between the C∞(M)-modules �(E) and �(Ẽ)G. In
fact, if X̃ ∈ �(Ẽ)G then the corresponding section X ∈ �(E) is given by

X(x) = π̃(X̃(q)), for x ∈ M,

with q ∈ Q and π(q) = x (for more details, see [25]).

Examples 2.3. (a) Suppose that Ẽ = TQ and that φ̃ : G × TQ → TQ is the tangent lift φT

of φ defined by

φT
g = T φg, for all g ∈ G.

Then, φT satisfies conditions (i) and (ii) and, thus, one may consider the quotient vector
bundle (E = TQ/G, τQ|G,M) of (TQ, τQ,M) by the action of G. The space �(TQ/G) may
be identified with the set of vector fields on Q which are G-invariant.

(b) Assume that Ẽ = T ∗Q and that φ̃ : G × T ∗Q → T ∗Q is the cotangent lift φT ∗
of φ

defined by

φT ∗
g = T ∗φg−1 , for all g ∈ G.

Then, φT ∗
satisfies conditions (i) and (ii) and, therefore, one may consider the quotient

vector bundle (T ∗Q/G,πQ|G,M) of (T ∗Q,πQ,Q) by the action of G. Moreover, if
(τQ|G)∗ : (TQ/G)∗ → M is the dual vector bundle to τQ|G : TQ/G → M it is easy to
prove that the vector bundles (τQ|G)∗ : (TQ/G)∗ → M and πQ|G : T ∗Q/G → M are
isomorphic.

(c) Suppose that g is the Lie algebra of G, that Ẽ is the trivial vector bundle
pr1 : Q × g → Q and that the action φ̃ = (φ,Ad) of G on Q × g is given by

(φ,Ad)g(q, ξ) = (φg(q), Adgξ), for g ∈ G and (q, ξ) ∈ Q × g, (2.15)

where Ad : G × g → g is the adjoint representation of G on g. Note that the space �(Q × g)

may be identified with the set of π -vertical vector fields on Q. In addition, φ̃ satisfies conditions
(i) and (ii) and the resultant quotient vector bundle pr1|G : g̃ = (Q × g)/G → M = Q/G

is just the adjoint bundle associated with the principal bundle π : Q → M . Furthermore, if
for each ξ ∈ g, we denote by ξQ the infinitesimal generator of the action φ associated with ξ ,
then the map

j : g̃ → TQ/G, [(q, ξ)] → [ξQ(q)]

induces a monomorphism between the vector bundles g̃ and TQ/G. Thus, g̃ may be considered
as a vector subbundle of TQ/G. In addition, the space �(g̃) may be identified with the set of
vector fields on Q which are vertical and G-invariant (see [25]).

Remark 2.4. (a) The tangent map to π , T π : TQ → TM, induces an epimorphism
[T π ] : TQ/G → TM, between the vector bundles TQ/G and TM and, furthermore,
Imj = ker[T π ]. Therefore, we have an exact sequence of vector bundles

g̃ � TQ/G
j �[T π ]

TM

which is just the Atiyah sequence associated with the principal bundle π : Q → M (for more
details, see [25]).

(b) Recall that if π : Q → M is a principal bundle with structural group G then a principal
connection A on Q is a Lie algebra-valued one-form A : TQ → g such that:
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(i) For all ξ ∈ g and for all q ∈ Q,A(ξQ(q)) = ξ , and
(ii) A is equivariant with respect to the actions φT : G × TQ → TQ and Ad : G × g → g.

Any choice of a connection in the principal bundle π : Q → M determines an isomorphism
between the vector bundles TQ/G → M and TM ⊕ g̃ → M . In fact, if A : TQ → g is a
principal connection then the map IA : TQ/G → TM ⊕ g̃ defined by

IA[X̃q] = (Tqπ)(X̃q) ⊕ [(q,A(X̃q))] (2.16)

for X̃q ∈ TqQ, is a vector bundle isomorphism over the identity id : M → M (see [6, 25]).
Next, using the principal connection A, we will obtain a local basis of

�(TQ/G) ∼= �(TM ⊕ g̃) ∼= X(M) ⊕ �(g̃). First of all, we choose a local trivialization
of the principal bundle π : Q → M to be U × G, where U is an open subset of M. Thus,
we consider the trivial principal bundle π : U × G → U with structural group G acting only
on the second factor by left multiplication. Let e be the identity element of G and assume
that there are local coordinates (xi) in U and that {ξa} is a basis of g. Denote by

{
ξL
a

}
the

corresponding left-invariant vector fields on G, that is,

ξL
a (g) = (TeLg)(ξa), for g ∈ G,

where Lg : G → G is the left translation by g, and suppose that

A

(
∂

∂xi |(x,e)

)
= Aa

i (x)ξa,

for i ∈ {1, . . . , m} and x ∈ U . Then, the horizontal lift of the vector field ∂
∂xi on U is the

vector field
(

∂
∂xi

)h
on U × G given by(
∂

∂xi

)h

= ∂

∂xi
− Aa

i ξ
L
a .

Therefore, the vector fields on U × G{
ei = ∂

∂xi
− Aa

i ξ
L
a , eb = ξL

b

}
(2.17)

are G-invariant and they define a local basis {e′
i , e

′
b} of �(TQ/G) ∼= X(M) ⊕ �(g̃). We will

denote by (xi, yi, yb) the corresponding fibred coordinates on TQ/G. In the terminology
of [6],

yi = ẋi , yb = v̄b, for i ∈ {1, . . . , m} and b ∈ {1, . . . , n}.

Now, we will return to the general case.
Assume that π : Q → M is a principal bundle with structural group G, that Ẽ is a vector

bundle over Q of rank n with vector bundle projection τ̃ : Ẽ → Q and that φ̃ : G × Ẽ → Ẽ

is an action of G on Ẽ which satisfies conditions (i) and (ii). Denote by φ : G × Q → Q the
free action of G on Q.

We will also suppose that ([[·, ·]]̃, ρ̃) is a Lie algebroid structure on τ̃ : Ẽ → Q such that
the space �(Ẽ)G is a Lie subalgebra of the Lie algebra (�(Ẽ), [[·, ·]]̃). Thus, one may define
a Lie algebra structure

[[·, ·]] : �(E) × �(E) → �(E)

on �(E). The Lie bracket [[·, ·]] is the restriction of [[·, ·]]̃ to �(Ẽ)G ∼= �(E).
On the other hand, the anchor map ρ̃ : Ẽ → TQ is equivariant. In fact, if

X̃ ∈ �(Ẽ)G, f ∈ C∞(M) and Ỹ ∈ �(Ẽ)G then

[[X̃, (f ◦ π)Ỹ ]]˜ = (f ◦ π)[[X̃, Ỹ ]]˜ + ρ̃(X̃)(f ◦ π)Ỹ
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is an invariant section. This implies that the function ρ̃(X̃)(f ◦ π) is projectable, that is, there
exists ρ(X̃)(f ) ∈ C∞(M) such that

ρ̃(X̃)(f ◦ π) = ρ(X̃)(f ) ◦ π, ∀f ∈ C∞(M).

The map ρ(X̃) : C∞(M) → C∞(M) defines a vector field ρ(X̃) on M and ρ̃(X̃) is
π -projectable onto ρ(X̃).

This proves that ρ̃ : Ẽ → TQ is equivariant and, therefore, ρ̃ induces a bundle map
ρ : E = Ẽ/G → TM = T (Q/G) such that the following diagram is commutative

E
ρ � TM

π̃

�

T π

�

Ẽ
ρ̃ � TQ

Moreover, it follows that the pair ([[·, ·]], ρ) is a Lie algebroid structure on the quotient vector
bundle τ = τ̃ |G : E = Ẽ/G → M = Q/G. In addition, from the definition of ([[·, ·]], ρ),
one deduces that the pair (π̃, π) is a morphism between the Lie algebroids (Ẽ, [[·, ·]]̃, ρ̃) and
(E, [[·, ·]], ρ).

We call (E, [[·, ·]], ρ) the quotient Lie algebroid of (Ẽ, [[·, ·]]̃, ρ̃) by the action of the Lie
group G (a more general definition of a quotient Lie algebroid may be found in [17]).

Examples 2.5. (i) Assume that Ẽ = TQ and that φ̃ is the tangent action φT : G×TQ → TQ.
Consider on the vector bundle τQ : TQ → Q the standard Lie algebroid structure ([·, ·], id).
Since the Lie bracket of two G-invariant vector fields on Q is also G-invariant, we obtain a Lie
algebroid structure ([[·, ·]], ρ) on the quotient vector bundle τQ|G : E = TQ/G → M = Q/G.
We call (E = TQ/G, [[·, ·]], ρ) the Atiyah algebroid associated with the principal bundle
π : Q → M (see [25]).

(ii) Suppose that Ẽ is the trivial vector bundle pr1 : Q × g → Q. The space �(Q × g)

is isomorphic to the space of π -vertical vector fields on Q and, thus, �(Q × g) is a Lie
subalgebra of (X(Q), [·, ·]). This implies that the vector bundle pr1 : Q×g → g admits a Lie
algebroid structure ([[·, ·]]̃, ρ̃). On the other hand, denote by (φ,Ad) the action of G on Q× g

given by (2.15). Then, the space �(Q × g)G is isomorphic to the space Xv(Q)G of π -vertical
G-invariant vector fields on Q. Since Xv(Q)G is a Lie subalgebra of (X(Q), [·, ·]), one may
define a Lie algebroid structure on the adjoint bundle pr1|G : g̃ = (Q × g)/G → M = Q/G

with anchor map ρ = 0, that is, the adjoint bundle is a Lie algebra bundle (see [25]).

Now, let A : TQ → g be a connection in the principal bundle π : Q → M and
B : TQ ⊕ TQ → g be the curvature of A. Using the principal connection A one
may identity the vector bundles E = TQ/G → M = Q/G and TM ⊕ g̃ → M , via
the isomorphism IA given by (2.16). Under this identification, the Lie bracket [[·, ·]] on
�(TQ/G) ∼= �(TM ⊕ g̃) ∼= X(M) ⊕ Xv(Q)G is given by

[[X ⊕ ξ̃ , Y ⊕ η̃]] = [X, Y ] ⊕ ([ξ̃ , η̃] + [Xh, η̃] − [Yh, ξ̃ ] − B(Xh, Y h)),

for X, Y ∈ X(M) and ξ̃ , η̃ ∈ Xv(Q)G, where Xh ∈ X(Q) (respectively, Yh ∈ X(Q)) is the
horizontal lift of X (respectively, Y ), via the principal connection A (see [6]). The anchor map
ρ : �(TQ/G) ∼= X(M) ⊕ Xv(Q)G → X(M) is given by

ρ(X ⊕ ξ̃ ) = X.
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Next, using the connection A, we will obtain the (local) structure functions of (E, [[·, ·]], ρ)

with respect to a local trivialization of the vector bundle.
First of all, we choose a local trivialization U × G of the principal bundle π : Q → M ,

where U is an open subset of M such that there are local coordinates (xi) on U. We will also
suppose that {ξa} is a basis of g and that

A

(
∂

∂xi |(x,e)

)
= Aa

i (x)ξa, B

(
∂

∂xi |(x,e)
,

∂

∂xj |(x,e)

)
= Ba

ij (x)ξa, (2.18)

for i, j ∈ {1, . . . , m} and x ∈ U . If cc
ab are the structure constants of g with respect to the

basis {ξa} then

Bc
ij = ∂Ac

i

∂xj
− ∂Ac

j

∂xi
− cc

abA
a
i A

b
j . (2.19)

Moreover, if {e′
i , e

′
b} is the local basis of �(TQ/G) considered in remark 2.4 (see (2.17)) then,

using (2.19), we deduce that

[[e′
i , e

′
j ]] = −Bc

ij e
′
c, [[e′

i , e
′
a]] = cc

abA
b
i e

′
c, [[e′

a, e
′
b]] = cc

abe
′
c,

ρ(e′
i ) = ∂

∂xi
, ρ(e′

a) = 0,

for i, j ∈ {1, . . . , m} and a, b ∈ {1, . . . , n}. Thus, the local structure functions of the Atiyah
algebroid τQ|G : E = TQ/G → M = Q/G with respect to the local coordinates (xi) and to
the local basis {e′

i , e
′
a} of �(TQ/G) are

Ck
ij = C

j

ia = −C
j

ai = Ci
ab = 0, Ca

ij = −Ba
ij , Cc

ia = −Cc
ai = cc

abA
b
i ,

(2.20)
Cc

ab = cc
ab, ρ

j

i = δij , ρa
i = ρi

a = ρb
a = 0.

On the other hand, as we know the dual vector bundle to the Atiyah algebroid is the quotient
vector bundle πQ|G : T ∗Q/G → M = Q/G of the cotangent bundle πQ : T ∗Q → Q by
the cotangent action φT ∗

of G on T ∗Q (see example 2.3). Now, let 	TQ be the canonical
symplectic 2-form of T ∗Q and �TQ be the Poisson 2-vector on T ∗Q associated with 	Q. If
(qα) are local coordinates on Q and (qα, pα) are the corresponding fibred coordinates on T ∗Q
then

	TQ = dqα ∧ dpα, �TQ = ∂

∂pα

∧ ∂

∂qα
.

Note that �TQ is the linear Poisson structure on T ∗Q associated with the standard Lie algebroid
τQ : TQ → Q. In addition, it is well known that the cotangent action φT ∗

is symplectic, that
is,

(φT ∗
)g : (T ∗Q,	TQ) → (T ∗Q,	TQ)

is a symplectomorphism, for all g ∈ G. Thus, the 2-vector �TQ on TQ is G-invariant and it
induces a 2-vector �̃TQ on the quotient manifold T ∗Q/G. Under the identification between
the vector bundles (τQ|G)∗ : E∗ = (TQ/G)∗ → M = Q/G and πQ|G : T ∗Q/G → M =
Q/G, �̃TQ is just the linear Poisson structure �E = �TQ/G on E∗ = (TQ/G)∗ associated with
the Atiyah algebroid τQ|G : TQ/G → M = Q/G. If (xi, ẋi , v̄a) are the local coordinates
on the vector bundle TQ/G considered in remark 2.4 and (xi, pi, p̄a) are the corresponding
coordinates on the dual vector bundle (TQ/G)∗ ∼= T ∗Q/G then, using (2.8) and (2.20), we
obtain that the local expression of �TQ/G is

�TQ/G = ∂

∂pi

∧ ∂

∂xi
+ cc

abA
b
i p̄c

∂

∂pi

∧ ∂

∂p̄a

+
1

2

(
cc
abp̄c

∂

∂p̄a

∧ ∂

∂p̄b

− Bc
ij p̄c

∂

∂pi

∧ ∂

∂pj

)
.
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2.2. Lagrangian mechanics on Lie algebroids

In this section, we will recall some results about a geometric description of Lagrangian
mechanics on Lie algebroids which has been developed by Martı́nez in [29].

2.2.1. The prolongation of a Lie algebroid over the vector bundle projection. Let
(E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension m and τ : E → M

be the vector bundle projection.
If f ∈ C∞(M) we will denote by f c and f v the complete and vertical lift to E of f . f c

and f v are the real functions on E defined by

f c(a) = ρ(a)(f ), f v(a) = f (τ(a)), (2.21)

for all a ∈ E.
Now, let X be a section of E. Then, we can consider the vertical lift of X as the vector field

on E given by

Xv(a) = X(τ(a))va, for a ∈ E,

where v
a : Eτ(a) → Ta(Eτ(a)) is the canonical isomorphism between the vector spaces Eτ(a)

and Ta(Eτ(a)).
On the other hand, there exists a unique vector field Xc on E, the complete lift of X,

satisfying the two following conditions:

(i) Xc is τ -projectable on ρ(X) and

(ii) Xc(α̂) = L̂E
Xα,

for all α ∈ �(E∗) (see [13, 14]). Here, if β ∈ �(E∗) then β̂ is the linear function on E defined
by

β̂(b) = β(τ(b))(b), for all b ∈ E.

We have that (see [13, 14])

[Xc, Y c] = [[X, Y ]]c, [Xc, Y v] = [[X, Y ]]v, [Xv, Y v] = 0. (2.22)

Next, we consider the prolongation LτE of E over the projection τ (see section 2.1.1). LτE

is a vector bundle over E of rank 2n. Moreover, we may introduce the vertical lift Xv and the
complete lift Xc of a section X ∈ �(E) as the sections of LτE → E given by

Xv(a) = (0, Xv(a)), Xc(a) = (X(τ(a)),Xc(a)) (2.23)

for all a ∈ E. If {Xi} is a local basis of �(E) then
{
Xv

i , X
c
i

}
is a local basis of �(LτE) (see

[29]).
Now, denote by ([[·, ·]]τ , ρτ ) the Lie algebroid structure on LτE (see section 2.1.1). It

follows that

[[Xc, Y c]]τ = [[X, Y ]]c, [[Xc, Y v]]τ = [[X, Y ]]v, [[Xv, Y v]]τ = 0,

ρτ (Xc)(f c) = (ρ(X)(f ))c, ρτ (Xc)(f v) = (ρ(X)(f ))v, (2.24)

ρτ (Xv)(f c) = (ρ(X)(f ))v, ρτ (Xv)(f v) = 0,

for X, Y ∈ �(E) (see [29]).
Two other canonical objects onLτE are the Euler section � and the vertical endomorphism

S. � is the section of LτE → E defined by

�(a) = (
0, av

a

)
, for all a ∈ E
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and S is the section of the vector bundle (LτE)⊗ (LτE)∗ → E characterized by the following
conditions

S(Xv) = 0, S(Xc) = Xv,

for X ∈ �(E).
Finally, a section ξ ofLτE → E is said to be a second-order differential equation (SODE)

on E if S(ξ) = � (for more details, see [29]).

Remark 2.6. If E is the standard Lie algebroid TM, then LτE = T (TM) and the Lie
algebroid structure ([[·, ·]]τ , ρτ ) is the usual one on the vector bundle T (TM) → TM.
Moreover, � is the Euler vector field on TM and S is the vertical endomorphism on TM.

Remark 2.7. Suppose that (xi) are coordinates on an open subset U of M and that {eα} is
a basis of sections of τ−1(U) → U . Denote by (xi, yα) the corresponding coordinates on
τ−1(U) and by ρi

α and C
γ

αβ the corresponding structure functions of E. If X is a section of E
and on U

X = Xαeα

then Xv and Xc are the vector fields on E given by

Xv = Xα ∂

∂yα
, Xc = Xαρi

α

∂

∂xi
+

(
ρi

β

∂Xα

∂xi
− Xγ Cα

γβ

)
yβ ∂

∂yα
. (2.25)

In particular,

ev
α = ∂

∂yα
, ec

α = ρi
α

∂

∂xi
− C

γ

αβyβ ∂

∂yγ
. (2.26)

On the other hand, if Vα, Tα are the sections of LτE defined by Vα = ev
α, Tα = ec

α then

Xv = XαVα, Xc =
(

ρi
β

∂Xα

∂xi
yβ

)
Vα + XαTα. (2.27)

Thus,

[[Tα, Tβ ]]τ =
(

ρi
δ

∂C
γ

αβ

∂xi
yδ

)
Vγ + C

γ

αβTγ ,

(2.28)
[[Tα, Vβ ]]τ = C

γ

αβVγ , [[Vα, Vβ ]]τ = 0.

The local expressions of � and S are the following ones,

� = yαVα, S = T α ⊗ Vα, (2.29)

where {T α, V α} is the dual basis of {Tα, Vα}. Therefore, a section ξ of LτE is a SODE if and
only if the local expression of ξ is of the form

ξ = yαTα + ξαVα,

where ξα are arbitrary local functions on E.
Note that

dLτ Ef =
(

ρi
α

∂f

∂xi
− C

γ

αβyβ ∂f

∂yγ

)
T α +

∂f

∂yα
V α,

dLτ ET γ = −1

2
C

γ

αβT α ∧ T β,

(2.30)

dLτ EV γ = −1

2

(
ρi

δ

∂C
γ

αβ

∂xi
yδ

)
T α ∧ T β + C

γ

αβT α ∧ V β,

for f ∈ C∞(E) and γ ∈ {1, . . . , n}.
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We also remark that there exists another local basis of sections on LτE. In fact, we may
define the local section T̃α as follows:

T̃α(a) =
(

eα(τ (a)), ρi
α

∂

∂xi |a

)
, for all a ∈ τ−1(U). (2.31)

Then, {T̃α, Ṽα = Vα} is a local basis of sections of LτE.
Note that

T̃α = Tα + C
γ

αβyβVγ (2.32)

and thus,

[[T̃α, T̃β ]]τ = C
γ

αβT̃γ , [[T̃α, Ṽβ ]]τ = 0, [[Ṽα, Ṽβ ]]τ = 0,
(2.33)

ρτ (T̃α) = ρi
α

∂

∂xi
, ρτ (Ṽα) = ∂

∂yα
,

for all α and β. Using the local basis {T̃α, Ṽα} one may introduce, in a natural way, local
coordinates (xi, yα; zα, vα) on LτE. If ω is a point of (τ τ )−1(τ−1(U)) (τ τ : LτE → E being
the vector bundle projection) then (xi, yα) are the coordinates of the point τ τ (ω) ∈ τ−1(U)

and

ω = zαT̃α(τ τ (ω)) + vαṼα(τ τ (ω)).

In addition, the anchor map ρτ is given by

ρτ (xi, yα; zα, vα) = (
xi, yα; ρi

αzα, vα
)

(2.34)

and if {T̃ α, Ṽ α} is the dual basis of {T̃α, Ṽα} then

S = T̃ α ⊗ Ṽα (2.35)

and

dLτ Ef = ρi
γ

∂f

∂xi
T̃ γ +

∂f

∂yγ
Ṽ γ ,

(2.36)
dLτ ET̃ γ = −1

2
C

γ

αβT̃ α ∧ T̃ β, dLτ EṼ γ = 0.

2.2.2. The Lagrangian formalism on Lie algebroids. Let (E, [[·, ·]], ρ) be a Lie algebroid of
rank n over a manifold M of dimension m and L : E → R be a Lagrangian function.

In this section, we will develop a geometric framework, which allows us to write the
Euler–Lagrange equations associated with the Lagrangian function L in an intrinsic way
(see [29]).

First of all, we introduce the Poincaré–Cartan 1-section θL ∈ �((LτE)∗) associated with
L defined by

θL(a)(X̂a) = (
dLτ EL(a)

)
(Sa(X̂a)) = ρτ (Sa(X̂a))(L) (2.37)

for a ∈ E and X̂a ∈ (LτE)a, (LτE)a being the fibre of LτE → E over the point a. Then, the
Poincaré–Cartan 2-section ωL associated with L is, up to the sign, the differential of θL, that
is,

ωL = −dLτ EθL (2.38)

and the energy function EL is

EL = ρτ (�)(L) − L. (2.39)

Now, let γ : I = (−ε, ε) ⊆ R → E be a curve in E. Then, γ is a solution of the Euler–
Lagrange equations associated with L if and only if:
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(i) γ is admissible, that is, (γ (t), γ̇ (t)) ∈ (LτE)γ (t), for all t.
(ii) i(γ (t),γ̇ (t))ωL(γ (t)) = (

dLτ EEL

)
(γ (t)), for all t.

If (xi) are coordinates on M, {eα} is a local basis of �(E), (xi, yα) are the corresponding
coordinates on E and

γ (t) = (xi(t), yα(t)),

then γ is a solution of the Euler–Lagrange equations if and only if

dxi

dt
= ρi

αyα,
d

dt

(
∂L

∂yα

)
= ρi

α

∂L

∂xi
− C

γ

αβyβ ∂L

∂yγ
, (2.40)

for i ∈ {1, . . . , m} and α ∈ {1, . . . , n}, where ρi
α and C

γ

αβ are the structure functions of the Lie
algebroid E with respect to the coordinates (xi) and the local basis {eα} (see section 2.1.1).

In particular, if ξ ∈ �(LτE) is a SODE and

iξωL = dLτ EEL (2.41)

then the integral curves of ξ , that is, the integral curves of the vector field ρτ (ξ) are solutions
of the Euler–Lagrange equations associated with L.

If the Lagrangian L is regular, that is, ωL is a nondegenerate section, then there exists
a unique solution ξL of equation (2.41) and ξL is a SODE. In such a case, ξL is called the
Euler–Lagrange section associated with L (for more details, see [29]).

If E is the standard Lie algebroid TM then θL (respectively, ωL and EL) is the usual
Poincaré–Cartan 1-form (respectively, the usual Poincaré–Cartan 2-form and the Lagrangian
energy) associated with the Lagrangian function L : TM → R. In this case, if L : TM → R

is regular, ξL is the Euler–Lagrange vector field.

Remark 2.8. Suppose that (xi) are coordinates on M and that {eα} is a local basis of sections
of E. Denote by (xi, yα) the corresponding coordinates on E, by ρi

α and C
γ

αβ the corresponding
structure functions of E and by {T̃α, Ṽα} the local basis of �(LτE) considered in remark 2.7.

If {T̃ α, Ṽ α} is the dual basis of {T̃α, Ṽα} then

θL = ∂L

∂yα
T̃ α,

ωL = ∂2L

∂yα∂yβ
T̃ α ∧ Ṽ β +

(
1

2

∂L

∂yγ
C

γ

αβ − ρi
α

∂2L

∂xi∂yβ

)
T̃ α ∧ T̃ β,

EL = ∂L

∂yα
yα − L.

Thus, the Lagrangian L is regular if and only if the matrix (Wαβ) = (
∂2L

∂yα∂yβ

)
is regular.

Moreover, if L is regular then the Euler–Lagrange section ξL associated with L is given by

ξL = yαT̃α + Wαβ

(
ρi

β

∂L

∂xi
− ρi

γ yγ ∂2L

∂xi∂yβ
+ yγ Cν

γβ

∂L

∂yν

)
Ṽα, (2.42)

where (Wαβ) is the inverse matrix of (Wαβ).

3. Lie algebroids and Hamiltonian mechanics

3.1. The prolongation of a Lie algebroid over the vector bundle projection of the dual bundle

Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension m and
τ ∗ : E∗ → M be the vector bundle projection of the dual bundle E∗ to E.
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We consider the prolongation Lτ ∗
E of E over τ ∗,

Lτ ∗
E = {(b, v) ∈ E × TE∗/ρ(b) = (T τ ∗)(v)}.

Lτ ∗
E is a Lie algebroid over E∗ of rank 2n with Lie algebroid structure ([[·, ·]]τ ∗

, ρτ ∗
) defined

as follows (see section 2.1.1). If (f ′
i (Xi ◦ τ ∗),X′) and (s ′

j (Yj ◦ τ ∗), Y ′) are two sections of
Lτ ∗

E → E∗, with f ′
i , s

′
j ∈ C∞(E∗),Xi, Yj ∈ �(E) and X′, Y ′ ∈ X(E∗), then

[[(f ′
i (Xi ◦ τ ∗),X′), (s ′

j (Yj ◦ τ ∗), Y ′)]]τ
∗ = (f ′

i s
′
j ([[Xi, Yj ]] ◦ τ ∗) + X′(s ′

j )(Yj ◦ τ ∗)

−Y ′(f ′
i )(Xi ◦ τ ∗), [X′, Y ′]), ρτ ∗

(f ′
i (Xi ◦ τ ∗),X′) = X′.

Now, if (xi) are local coordinates on an open subset U of M, {eα} is a basis of sections of
the vector bundle τ−1(U) → U and {eα} is the dual basis of {eα}, then {ẽα, ēα} is a basis of
sections of the vector bundle (τ τ ∗

)−1((τ ∗)−1(U)) → (τ ∗)−1(U), where τ τ ∗
: Lτ ∗

E → E∗ is
the vector bundle projection and

ẽα(a∗) =
(

eα(τ ∗(a∗)), ρi
α

∂

∂xi |a∗

)
, ēα(a∗) =

(
0,

∂

∂yα |a∗

)
(3.1)

for a∗ ∈ (τ ∗)−1(U). Here, ρi
α are the components of the anchor map with respect to the basis

{eα} and (xi, yα) are the local coordinates on E∗ induced by the local coordinates (xi) and the
basis {eα}. In general, if X = Xγ eγ is a section of the vector bundle τ−1(U) → U then one
may consider the sections X̃ and X̄ of (τ τ ∗

)−1((τ ∗)−1(U)) → (τ ∗)−1(U) defined by

X̃(a∗) =
(

X(τ ∗(a∗)),
(
ρi

γ Xγ
) ∂

∂xi |a∗

)
,

X̄(a∗) =
(

0, Xγ (τ ∗(a∗))
∂

∂yγ |a∗

)
,

for a∗ ∈ (τ ∗)−1(U). Using the local basis {ẽα, ēα} one may introduce, in a natural way, local
coordinates (xi, yα; zα, vα) on Lτ ∗

E. If ω∗ is a point of (τ τ ∗
)−1((τ ∗)−1(U)) then (xi, yα) are

the coordinates of the point τ τ ∗
(ω∗) ∈ (τ ∗)−1(U) and

ω∗ = zαẽα(τ τ ∗
(ω∗)) + vαēα(τ τ ∗

(ω∗)).

On the other hand, a direct computation proves that

ρτ ∗
(ẽα) = ρi

α

∂

∂xi
, ρτ ∗

(ēα) = ∂

∂yα

,

[[ẽα, ẽβ ]]τ
∗ = ˜[[eα, eβ ]] = C

γ

αβ ẽγ , [[ẽα, ēβ]]τ
∗ = [[ēα, ēβ]]τ

∗ = 0, (3.2)

for all α and β, C
γ

αβ being the structure functions of the Lie bracket [[·, ·]] with respect to the
basis {eα}. Thus, if {ẽα, ēα} is the dual basis of {ẽα, ēα} then

dLτ∗
Ef = ρi

α

∂f

∂xi
ẽα +

∂f

∂yα

ēα,

(3.3)
dLτ∗

Eẽγ = −1

2
C

γ

αβ ẽα ∧ ẽβ , dLτ∗
Eēγ = 0,

for f ∈ C∞(E∗).

Remark 3.1. If E is the tangent Lie algebroid TM, then the Lie algebroid (Lτ ∗
E, [[·, ·]]τ ∗

, ρτ ∗
)

is the standard Lie algebroid (T (T ∗M), [·, ·], Id).
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3.2. The canonical symplectic section of Lτ ∗
E

Let (E, [[, ]], ρ) be a Lie algebroid of rank n over a manifold M of dimension m and Lτ ∗
E be

the prolongation of E over the vector bundle projection τ ∗ : E∗ → M . We may introduce a
canonical section λE of the vector bundle (Lτ ∗

E)∗ as follows. If a∗ ∈ E∗ and (b, v) is a point
of the fibre of Lτ ∗

E over a∗ then

λE(a∗)(b, v) = a∗(b). (3.4)

λE is called the Liouville section of (Lτ ∗
E)∗.

Now, the canonical symplectic section 	E is defined by

	E = −dLτ∗
EλE. (3.5)

We have:

Theorem 3.2. 	E is a symplectic section of the Lie algebroid (Lτ ∗
E, [[·, ·]]τ ∗

, ρτ ∗
), that is,

(i) 	E is a nondegenerate 2-section and
(ii) dLτ∗

E	E = 0.

Proof. It is clear that dLτ∗
E	E = 0.

On the other hand, if (xi) are local coordinates on an open subset U of M, {eα} is a basis of
sections of the vector bundle τ−1(U) → U, (xi, yα) are the corresponding local coordinates
of E∗ on (τ ∗)−1(U) and {ẽα, ēα} is the basis of the vector bundle (τ τ ∗

)−1((τ ∗)−1(U)) →
(τ ∗)−1(U) then, using (3.4), it follows that

λE(xi, yα) = yαẽα (3.6)

where {ẽα, ēα} is the dual basis to {ẽα, ēα}. Thus, from (3.3), (3.5) and (3.6), we obtain that

	E = ẽα ∧ ēα + 1
2C

γ

αβyγ ẽα ∧ ẽβ (3.7)

C
γ

αβ being the structure functions of the Lie bracket [[·, ·]] with respect to the basis {eα}.
Therefore, using (3.7), we deduce that 	E is a nondegenerate 2-section. �

Remark 3.3. If E is the standard Lie algebroid TM then λE = λTM (respectively, 	E = 	TM)
is the usual Liouville 1-form (respectively, the canonical symplectic 2-form) on T ∗M .

Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and γ be a section of the dual
bundle E∗ to E.

Consider the morphism ((Id, T γ ◦ ρ), γ ) between the vector bundles E and Lτ ∗
E

M
γ � E∗

� �

E
(Id, T γ ◦ ρ) � Lτ ∗

E

defined by (Id, T γ ◦ ρ)(a) = (a, (Txγ )(ρ(a))), for a ∈ Ex and x ∈ M .

Theorem 3.4. If γ is a section of E∗ then the pair ((Id, T γ ◦ ρ), γ ) is a morphism between
the Lie algebroids (E, [[·, ·]], ρ) and (Lτ ∗

E, [[·, ·]]τ ∗
, ρτ ∗

). Moreover,

((Id, T γ ◦ ρ), γ )∗λE = γ, ((Id, T γ ◦ ρ), γ )∗(	E) = −dEγ. (3.8)
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Proof. Suppose that (xi) are local coordinates on M, that {eα} is a local basis of �(E) and
that

γ = γαeα,

with γα local real functions on M and {eα} the dual basis to {eα}. Denote by {ẽα, ēα} the
corresponding local basis of �(Lτ ∗

E). Then, using (3.1), it follows that

(Id, T γ ◦ ρ) ◦ eα =
(

ẽα + ρi
α

∂γν

∂xi
ēν

)
◦ γ, (3.9)

for α ∈ {1, . . . , n}, ρi
α being the components of the anchor map with respect to the local

coordinates (xi) and to the basis {eα}. Thus, from (2.4),

((Id, T γ ◦ ρ), γ )∗(ẽα) = eα, ((Id, T γ ◦ ρ), γ )∗(ēα) = ρi
β

∂γα

∂xi
eβ = dEγα,

where {ẽα, ēα} is the dual basis to {ẽα, ēα}.
Therefore, from (2.4), (2.5) and (3.3), we obtain that the pair ((Id, T γ ◦ ρ), γ ) is a

morphism between the Lie algebroids E → M and Lτ ∗
E → E∗.

On the other hand, if x is a point of M and a ∈ Ex then, using (3.4), we have that

{{((Id, T γ ◦ ρ), γ )∗(λE)}(x)}(a) = λE(γ (x))(a, (Txγ )(ρ(a))) = γ (x)(a)

that is,

((Id, T γ ◦ ρ), γ )∗(λE) = γ.

Consequently, from (3.5) and since the pair ((Id, T γ ◦ ρ), γ ) is a morphism between the Lie
algebroids E and Lτ ∗

E, we deduce that

((Id, T γ ◦ ρ), γ )∗(	E) = −dEγ. �

Remark 3.5. Let γ : M −→ T ∗M be a 1-form on a manifold M and λTM (respectively,
	TM) be the Liouville 1-form (respectively, the canonical symplectic 2-form) on T ∗M . Then,
using theorem 3.4 (with E = TM), we deduce a well-known result (see, for instance, [1])

γ ∗(λTM) = γ, γ ∗(	TM) = −dTMγ.

From theorem 3.4, we also obtain

Corollary 3.6. If γ ∈ �(E∗) is a 1-cocycle of E then

((Id, T γ ◦ ρ), γ )∗(	E) = 0.

3.3. The Hamilton equations

Let H : E∗ → R be a Hamiltonian function. Then, since 	E is a symplectic section of
(Lτ ∗

E, [[·, ·]]τ ∗
, ρτ ∗

) and dLτ∗
EH ∈ �((Lτ ∗

E)∗), there exists a unique section ξH ∈ �(Lτ ∗
E)

satisfying

iξH
	E = dLτ∗

EH. (3.10)

With respect to the local basis {ẽα, ēα} of �(Lτ ∗
E), ξH is locally expressed as follows:

ξH = ∂H

∂yα

ẽα −
(

C
γ

αβyγ

∂H

∂yβ

+ ρi
α

∂H

∂xi

)
ēα. (3.11)
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Thus, the vector field ρτ ∗
(ξH ) on E∗ is given by

ρτ ∗
(ξH ) = ρi

α

∂H

∂yα

∂

∂xi
−

(
C

γ

αβyγ

∂H

∂yβ

+ ρi
α

∂H

∂xi

)
∂

∂yα

.

Therefore, ρτ ∗
(ξH ) is just the Hamiltonian vector field of H with respect to the linear Poisson

structure �E∗ on E∗ induced by Lie algebroid structure ([[·, ·]], ρ), that is,

ρτ ∗
(ξH ) = idTE∗

H�E∗ .

Consequently, the integral curves of ξH (i.e., the integral curves of the vector field ρτ ∗
(ξH ))

satisfy the Hamilton equations for H,

dxi

dt
= ρi

α

∂H

∂yα

,
dyα

dt
= −

(
C

γ

αβyγ

∂H

∂yβ

+ ρi
α

∂H

∂xi

)
, (3.12)

for i ∈ {1, . . . , m} and α ∈ {1, . . . , n}.
Remark 3.7. If E is the standard Lie algebroid TM then ξH is the Hamiltonian vector
field of H : T ∗M → R with respect to the canonical symplectic structure of T ∗M and
equation (3.12) are the usual Hamilton equations associated with H.

3.4. Complete and vertical lifts

On E∗ we have similar concepts of complete and vertical lifts to those in E (see [30]). The
existence of a vertical lift is but a consequence of E∗ being a vector bundle. Explicitly, given
a section α ∈ �(E∗) we define the vector field αv on E∗ by

αv(a∗) = α(τ ∗(a∗))va∗ , for a∗ ∈ E∗,

where v
a∗ : E∗

τ ∗(a∗) −→ Ta∗(E∗
τ ∗(a∗)) is the canonical isomorphism between the vector spaces

E∗
τ ∗(a∗) and Ta∗(E∗

τ ∗(a∗)).
On the other hand, if X is a section of τ : E → M , there exists a unique vector field X∗c

on E∗, the complete lift of X to E∗ satisfying the two following conditions:

(i) X∗c is τ ∗-projectable on ρ(X) and
(ii) X∗c(Ŷ ) = [̂X, Y ],

for all Y ∈ �(E) (see [13]). Here, if X is a section of E then X̂ is the linear function
X̂ ∈ C∞(E∗) defined by

X̂(a∗) = a∗(X(τ ∗(a∗))), for all a∗ ∈ E∗.

We have that (see [13])

[X∗c, Y ∗c] = [[X, Y ]]∗c, [X∗c, βv] = (
LE

Xβ
)v

, [αv, βv] = 0. (3.13)

Next, we consider the prolongation Lτ ∗
E of E over the projection τ ∗ (see section 2.1.1). Lτ ∗

E

is a vector bundle over E∗ of rank 2n. Moreover, we may introduce the vertical lift αv and
the complete lift X∗c of a section α ∈ �(E∗) and a section X ∈ �(E) as the sections of
Lτ ∗

E → E∗ given by

αv(a∗) = (0, αv(a∗)), X∗c(a∗) = (X(τ ∗(a∗)),X∗c(a∗)) (3.14)

for all a∗ ∈ E∗. If {Xi} is a local basis of �(E) and {αi} is the dual basis of �(E∗) then{
αv

i , X
∗c
i

}
is a local basis of �(Lτ ∗

E).
Now, denote by ([[·, ·]]τ ∗

, ρτ ∗
) the Lie algebroid structure on Lτ ∗

E (see section 3.1). It
follows that

[[X∗c, Y ∗c]]τ
∗ = [[X, Y ]]∗c, [[X∗c, βv]]τ

∗ = (
LE

Xβ
)v

, [[αv, βv]]τ
∗ = 0, (3.15)



Topical Review R263

and

ρτ ∗
(X∗c)(f v) = (ρ(X)(f ))v, ρτ ∗

(αv)(f v) = 0,
(3.16)

ρτ ∗
(X∗c)(Ŷ ) = ̂[[X, Y ]], ρτ ∗

(αv)(Ŷ ) = α(Y )v

for X, Y ∈ �(E), α, β ∈ �(E∗) and f ∈ C∞(M). Here, f v ∈ C∞(E∗) is the basic function
on E∗ defined by

f v = f ◦ τ ∗.

Suppose that (xi) are coordinates on an open subset U of M and that {eα} is a basis of sections
of τ−1(U) → U , and {eα} is the dual basis of sections of τ ∗−1(U) → U . Denote by (xi, yα)

the corresponding coordinates on τ ∗−1(U) and by ρi
α and C

γ

αβ the corresponding structure
functions of E. If θ is a section of E∗ and on U

θ = θαeα

and X is a section of E and on U

X = Xαeα,

then θv and X∗c are the vector fields on E∗ given by

θv = θα

∂

∂yα (3.17)

X∗c = Xαρi
α

∂

∂xi
−

(
ρi

α

∂Xβ

∂xi
yβ + C

γ

αβyγ Xβ

)
∂

∂yα

.

In particular,

ev
α = ∂

∂yα
, e∗c

α = ρi
α

∂

∂xi
− C

γ

αβyγ

∂

∂yβ

. (3.18)

In terms of the basis {ẽα, ēα} of sections of Lτ ∗
E → E∗ we have the local expressions

θv = θαēα

and

X∗c = Xαẽα −
(

ρi
α

∂Xβ

∂xi
yβ + C

γ

αβyγ Xβ

)
ēα.

Remark 3.8. If E is the standard Lie algebroid TM, then Lτ ∗
E = T (T ∗M) and the vertical

and complete lifts of sections are the usual vertical and complete lifts.

The following properties relate vertical and complete lifts with the Liouville 1-section
and the canonical symplectic 2-section.

Proposition 3.9. If X, Y are sections of E, β, θ are sections of E∗ and λE is the Liouville
1-section, then

λE(θv) = 0 and λE(X∗c) = X̂. (3.19)

If 	E is the canonical symplectic 2-section then

	E(βv, θv) = 0, 	E(X∗c, θv) = θ(X)v and 	E(X∗c, Y ∗c) = − ̂[[X, Y ]].

(3.20)

Proof. Indeed, for every a∗ ∈ E∗,

λE(θv)(a∗) = a∗(pr1(θ
v(a∗))) = a∗(0τ ∗(a∗)) = 0,
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and

λE(X∗c)(a∗) = a∗(pr1(X
∗c(a∗))) = a∗(X(τ ∗(a∗))) = X̂(a∗),

which proves (3.19).
For (3.20) we take into account (3.19) and the definition of the differential d , so that

	E(θv, βv) = ρτ ∗
(βv)(λE(θv)) − ρτ ∗

(θv)(λE(βv)) + λE([[θv, βv]]τ
∗
) = 0,

	E(X∗c, βv) = ρτ ∗
(βv)(λE(X∗c)) − ρτ ∗

(X∗c)(λE(βv)) + λE([[X∗c, βv]]τ
∗
)

= ρτ ∗
(βv)X̂ = β(X)v,

	E(X∗c, Y ∗c) = ρτ ∗
(Y ∗c)(λE(X∗c)) − ρτ ∗

(X∗c)(λE(Y ∗c)) + λE([[X∗c, Y ∗c]]τ
∗
)

= ρτ ∗
(Y ∗c)X̂ − ρτ ∗

(X∗c)Ŷ + ̂[[X, Y ]] = − ̂[[X, Y ]],

where we have used (3.15) and (3.16). �

Noether’s theorem has a direct generalization to the theory of dynamical Hamiltonian
systems on Lie algebroids. By an infinitesimal symmetry of a section X of a Lie algebroid we
mean another section Y which commutes with X, that is, [[X, Y ]] = 0.

Theorem 3.10. Let H ∈ C∞(E∗) be a Hamiltonian function and ξH be the corresponding
Hamiltonian section. If X ∈ �(E) is a section of E such that ρτ ∗

(X∗c)H = 0 then X∗c is a
symmetry of ξH and the function X̂ is a constant of the motion, that is ρτ ∗

(ξH )X̂ = 0.

Proof. Using (3.10) and since ρτ ∗
(X∗c)(H) = 0, it follows that

LLτ∗
E

X∗c

(
iξH

	E

) = dLτ∗
E
(
LLτ∗

E
X∗c H

) = 0. (3.21)

On the other hand, from (3.16) and (3.20), we obtain that

iX∗c	E = −dLτ∗
EX̂ (3.22)

and thus

LLτ∗
E

X∗c 	E = 0.

Therefore, using (3.21), we deduce that

i[[ξH ,X∗c]]τ∗ 	E = 0,

which implies that [[ξH ,X∗c]]τ
∗ = 0, that is, X∗c is a symmetry of ξH .

In addition, from (3.10) and (3.22), we conclude that

0 = 	E(ξH ,X∗c) = LLτ∗
E

ξH
X̂ = ρτ ∗

(ξH )(X̂). �

3.5. Poisson bracket

Let E be a Lie algebroid over M. Then, as we know, E∗ admits a linear Poisson structure �E∗

with linear Poisson bracket { , }E∗ (see section 2.1).
Next, we will prove that the Poisson bracket { , }E∗ can also be defined in terms of the

canonical symplectic 2-section 	E .

Proposition 3.11. Let F,G ∈ C∞(E∗) be functions on E∗ and ξF , ξG be the corresponding
Hamiltonian sections. Then, the Poisson bracket of F and G is

{F,G}E∗ = −	E(ξF , ξG).
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Proof. We will see that the Hamiltonian section defined by a basic function f v is −(dEf )v,
the vertical lift of −dEf ∈ �(E∗), and that the Hamiltonian section defined by a linear
function X̂ is X∗c, the complete lift of X ∈ �(E).

Indeed, using (3.16) and (3.20), we deduce that

	E(ξf v , θv) = (
dLτ∗

Ef v
)
(θv) = 0 = 	E((−dEf )v, θv),

	E(ξf v , Y ∗c) = (
dLτ∗

Ef v
)
(Y ∗c) = (dEf (Y ))v = 	E((−dEf )v, Y ∗c),

and similarly

	E(ξX̂, θv) = (
dLτ∗

EX̂
)
(θv) = ρτ ∗

(θv)X̂ = (θ(X))v = 	E(X∗c, θv),

	E(ξX̂, Y ∗c) = (
dLτ∗

EX̂
)
(Y ∗c) = ρτ ∗

(Y ∗c)X̂ = − ̂[[X, Y ]] = 	E(X∗c, Y ∗c),

for every Y ∈ �(E) and every θ ∈ �(E∗). The proof follows using (2.9), (3.20) and by taking
into account that complete and vertical lifts generate �(Lτ ∗

E). �

3.6. The Legendre transformation and the equivalence between the Lagrangian and
Hamiltonian formalisms

Let L : E → R be a Lagrangian function and θL ∈ �((LτE)∗) be the Poincaré–Cartan
1-section associated with L.

We introduce the Legendre transformation associated with L as the smooth map
LegL : E → E∗ defined by

LegL(a)(b) = θL(a)(z), (3.23)

for a, b ∈ Ex , where Ex is the fibre of E over the point x ∈ M and z is a point in the fibre of
LτE over the point a such that

pr1(z) = b,

pr1 : LτE → E being the restriction to LτE of the first canonical projection pr1 : E ×TE →
E.

The map LegL is well defined and its local expression in fibred coordinates on E and E∗

is

LegL(xi, yα) =
(

xi,
∂L

∂yα

)
. (3.24)

The Legendre transformation induces a map LLegL : LτE → Lτ ∗
E defined by

(LLegL)(b,Xa) = (b, (TaLegL)(Xa)), (3.25)

for a, b ∈ E and (b,Xa) ∈ (LτE)a ⊆ Eτ(a) × TaE, where T LegL : TE → TE∗ is the tangent
map of LegL. Note that τ ∗ ◦ LegL = τ and thus LLegL is well-defined.

Using (3.24), we deduce that the local expression of LLegL in the coordinates of LτE

and Lτ ∗
E (see sections 2.2.1 and 3.1) is

LLegL(xi, yα; zα, vα) =
(

xi,
∂L

∂yα
; zα, ρi

βzβ ∂2L

∂xi∂yα
+ vβ ∂2L

∂yα∂yβ

)
. (3.26)

Theorem 3.12. The pair (LLegL, LegL) is a morphism between the Lie algebroids
(LτE, [[·, ·]]τ , ρτ ) and (Lτ ∗

E, [[·, ·]]τ ∗
, ρτ ∗

). Moreover, if θL and ωL (respectively, λE and
	E) are the Poincaré–Cartan 1-section and 2-section associated with L (respectively, the
Liouville 1-section and the canonical symplectic section on Lτ ∗

E) then

(LLegL, LegL)∗(λE) = θL, (LLegL, LegL)∗(	E) = ωL. (3.27)
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Proof. Suppose that (xi) are local coordinates on M, that {eα} is a local basis of �(E)

and denote by {T̃α, Ṽα} (respectively, {ẽα, ēα}) the corresponding local basis of �(LτE)

(respectively, �(Lτ ∗
E)). Then, using (2.36) and (3.26), we deduce that

(LLegL, LegL)∗(ẽγ ) = T̃ γ , (LLegL, LegL)∗(ēγ ) = dLτ E

(
∂L

∂yγ

)
, for all γ.

Thus, from (2.36) and (3.3), we conclude that

(LLegL, LegL)∗
(
dLτ∗

Ef ′) = dLτ E(f ′ ◦ LegL), (3.28)

(LLegL, LegL)∗
(
dLτ∗

Eẽγ
) = dLτ E((LLegL, LegL)∗ẽγ ), (3.29)

(LLegL, LegL)∗
(
dLτ∗

Eēγ
) = dLτ E((LLegL, LegL)∗ēγ ), (3.30)

for all f ′ ∈ C∞(E∗) and for all γ . Consequently, the pair (LLegL, LegL) is a Lie algebroid
morphism. This result also follows using proposition 1.8 in [17].

Now, from (3.4) and (3.23), we obtain that

(LLegL, LegL)∗(λE) = θL.

Thus, using (2.38), (3.5) and the first part of the theorem, we deduce that

(LLegL, LegL)∗(	E) = ωL. �

We also may prove the following result.

Proposition 3.13. The Lagrangian L is regular if and only if the Legendre transformation
LegL : E → E∗ is a local diffeomorphism.

Proof. L is regular if and only if the matrix
(

∂2L
∂yα∂yβ

)
is regular. Therefore, using (3.24), we

deduce the result. �

Next, we will assume that L is hyperregular, that is, LegL is a global diffeomorphism.
Then, from (3.25) and theorem 3.12, we conclude that the pair (LLegL, LegL) is a Lie algebroid
isomorphism. Moreover, we may consider the Hamiltonian function H : E∗ → R defined by

H = EL ◦ Leg−1
L ,

where EL : E → R is the Lagrangian energy associated with L given by (2.39). The
Hamiltonian section ξH ∈ �(Lτ ∗

E) is characterized by the condition

iξH
	E = dLτ∗

EH (3.31)

and we have the following.

Theorem 3.14. If the Lagrangian L is hyperregular then the Euler–Lagrange section ξL

associated with L and the Hamiltonian section ξH are (LLegL, LegL)-related, that is,

ξH ◦ LegL = LLegL ◦ ξL. (3.32)

Moreover, if γ : I → E is a solution of the Euler–Lagrange equations associated with L,
then µ = LegL ◦ γ : I → E∗ is a solution of the Hamilton equations associated with H and,
conversely, if µ : I → E∗ is a solution of the Hamilton equations for H then γ = Leg−1

L ◦ µ

is a solution of the Euler–Lagrange equations for L.

Proof. From (3.27), (3.28) and (3.31), we obtain that (3.32) holds. Now, using (3.32) and
theorem 3.12, we deduce the second part of the theorem. �

Remark 3.15. If E is the standard Lie algebroid TM then LegL : TM → T ∗M is the usual
Legendre transformation associated with L : TM → R and theorem 3.14 gives the equivalence
between the Lagrangian and Hamiltonian formalisms in classical mechanics.
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3.7. The Hamilton–Jacobi equation

The aim of this section is to prove the following result.

Theorem 3.16. Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and ([[·, ·]]τ ∗
, ρτ ∗

)

be the Lie algebroid structure on Lτ ∗
E. Let H : E∗ −→ R be a Hamiltonian function and

ξH ∈ �(Lτ ∗
E) be the corresponding Hamiltonian section. Let α ∈ �(E∗) be a 1-cocycle,

dEα = 0, and denote by σ ∈ �(E) the section σ = pr1 ◦ ξH ◦ α. Then, the following two
conditions are equivalent:

(i) For every curve t → c(t) in M satisfying

ρ(σ)(c(t)) = ċ(t), for all t, (3.33)

the curve t → α(c(t)) on E∗ satisfies the Hamilton equations for H.
(ii) α satisfies the Hamilton–Jacobi equation dE(H ◦ α) = 0, that is, the function

H ◦ α : M −→ R is constant on the leaves of the Lie algebroid foliation associated
with E.

Proof. For a curve c : I = (−ε, ε) ⊂ R −→ M on the base we define the curves
µ : I −→ E∗ and γ : I −→ E by

µ(t) = α(c(t)) and γ (t) = σ(c(t)).

Since α and σ are sections, it follows that both curves project to c. We consider the curve
v = (γ, µ̇) in E × TE∗ and note the following important facts about v:

• v(t) is in Lτ ∗
E, for every t ∈ I , if and only if c satisfies (3.33). Indeed ρ ◦ γ = ρ ◦ σ ◦ c

while T τ ∗ ◦ µ̇ = ċ.
• In such a case, µ is a solution of the Hamilton equations if and only if v(t) = ξH (µ(t)),

for every t ∈ I . Indeed, the first components coincide pr1(v(t)) = γ (t) and
pr1(ξH (µ(t))) = pr1(ξH (α(c(t)))) = σ(c(t)) = γ (t), and the equality of the second
components is just µ̇(t) = ρτ ∗

(ξH (µ(t))).

We also consider the map �α : E −→ Lτ ∗
E given by �α = (Id, T α ◦ ρ), and we recall that

	E(α(x))(�α(a),�α(b)) = 0, for all a, b ∈ Ex , because of corollary 3.6.
[(ii) ⇒ (i)] Assume that c satisfies (3.33), so that v(t) is a curve in Lτ ∗

E. We have to
prove that v(t) equals ξH (µ(t)), for every t ∈ I .

The difference d(t) = v(t) − ξH (µ(t)) is vertical, that is, pr1(d(t)) = 0, for all
t (note that pr1(v(t)) = pr1(ξH (µ(t))) = γ (t), for all t). Therefore, we have that
	E(µ(t))(d(t), η(t)) = 0, for every vertical curve t → η(t) (see (3.7)).

Let a : I −→ E be any curve on E over c (that is, τ ◦ a = c) and consider its image
under �α , that is ζ(t) = �α(a(t)) = (a(t), T α(ρ(a(t)))). Since v(t) = �α(γ (t)) is also in
the image of �α we have that 	E(µ(t))(v(t), ζ(t)) = 0. Thus

	E(µ(t))(d(t), ζ(t)) = −	E(µ(t))(ξH (µ(t)), ζ(t)) = −〈
dLτ∗

EH, ζ(t)
〉

= −T α(ρ(a(t)))H = −〈dE(H ◦ α), a(t)〉
which vanishes because dE(H ◦ α) = 0.

Since any element in (Lτ ∗
E)α(x), with x ∈ M , can be obtained as a sum of an

element in the image of � and a vertical, we conclude that 	E(µ(t))(d(t), η(t)) =
	E(α(c(t)))(d(t), η(t)) = 0 for every curve t → η(t), which amounts to d(t) = 0.

[(i) ⇒ (ii)] Suppose that x is a point of M and that b ∈ Ex . We will show that

〈dE(H ◦ α), b〉 = 0. (3.34)
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Let c : I = (−ε, ε) → M be the integral curve of ρ(σ) such that c(0) = x. It follows that
c satisfies (3.33). Let µ = α ◦ c, γ = σ ◦ c and v = (γ, µ̇) as above. Since µ satisfies
the Hamilton equations, we have that v(t) = ξH (µ(t)) for all t. As above we take any curve
t → a(t) in E over c such that a(0) = b. Since v(t) = �α(γ (t)) we have that

0 = 	E(µ(t))(�α(γ (t)),�α(a(t))) = 	E(µ(t))(v(t),�α(a(t)))

= 	E(µ(t))(ξH (µ(t)),�α(a(t))) = 〈
dLτ∗

EH,�α(a(t))
〉 = 〈dE(H ◦ α), a(t)〉.

In particular, at t = 0 we have that 〈dE(H ◦ α), b〉 = 0. �

Remark 3.17. Obviously, we can consider as a cocycle α a 1-coboundary α = dES, for
some function S on M. Nevertheless, it should be noted that on a Lie algebroid there exist, in
general, 1-cocycles that are not locally 1-coboundaries.

Remark 3.18. If we apply theorem 3.16 to the particular case when E is the standard Lie
algebroid TM then we directly deduce a well-known result (see theorem 5.2.4 in [1]).

Let L : E −→ R be a hyperregular Lagrangian and LegL : E −→ E∗ be the Legendre
transformation associated with L. Denote by H : E∗ −→ R the corresponding Hamiltonian
function, that is,

H = EL ◦ Leg−1
L ,

EL being the energy for L.
Now, suppose that α = dES, for S : M −→ R a function on M, is a solution of the

Hamilton–Jacobi equation dE(H ◦dES) = 0 and that µ : I = (−ε, ε) −→ E∗ is a solution of
the Hamilton equations for H such that µ(0) = dES(x), x being a point of M. If c : I −→ M

is the projection of the curve µ to M (that is, c = τ ∗ ◦ µ) then, from theorem 3.16, we deduce
that

µ = dES ◦ c.

On the other hand, the curve γ : I −→ E given by

γ = Leg−1
L ◦ µ

is a solution of the Euler–Lagrange equations associated with L (see theorem 3.14). Moreover,
since c = τ ◦ γ and γ is admissible, it follows that

ċ(t) = ρ(γ (t)), for all t.

Thus, if FE is the Lie algebroid foliation associated with E, we have that

c(I ) ⊆ FE
x ,

where FE
x is the leaf of FE over the point x.

In addition, H ◦ dES is constant on FE
x . We will show next that in the case that the

constant is 0 the function S is but the action.

Proposition 3.19. Let α = dES be a solution of the Hamilton–Jacobi equation such that

H ◦ dES = 0 on FE
x .

Then,

d(S ◦ c)

dt
= L ◦ γ.
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Proof. Since LegL ◦ γ = µ, we have that (�L) ◦ γ = 〈µ, γ 〉, and from EL = �L − L we
get L ◦ γ = 〈µ, γ 〉 − H ◦ µ. Moreover,

〈µ(t), γ (t)〉 = 〈dES(c(t)), γ (t)〉 = ρ(γ (t))S = ċ(t)S = d

dt
(S ◦ c).

In our case, c is a curve on the leaf FE
x and µ = dES ◦ c, so that H ◦ µ = 0. Therefore, we

immediately get L ◦ γ = d
dt

(S ◦ c). �

In particular, if we consider a curve c : [0, T ] −→ M such that c(T ) = y then

S(y) =
∫ T

0
L(γ (t)) dt,

where we have put S(x) = 0, since S is undetermined by a constant.

4. The canonical involution for Lie algebroids

Let M be a smooth manifold, TM be its tangent bundle and τM : TM → M be the
canonical projection. Then, the tangent bundle to TM, T (T (M)), admits two vector
bundle structures. The vector bundle projection of the first structure (respectively, the
second structure) is the canonical projection τTM : T (T (M)) → TM (respectively, the
tangent map T (τM) : T (T (M)) → TM to τM : TM → M). Moreover, the canonical
involution σTM : T (T (M)) → T (T (M)) is an isomorphism between the vector bundles
τTM : T (T (M)) → TM and T (τM) : T (T (M)) → TM. We recall that if (xi) are local
coordinates on M and (xi, yi) (respectively, (xi, yi; ẋi , ẏi )) are the corresponding fibred
coordinates on TM (respectively, T (T (M))) then the local expression of σTM is

σTM(xi, yi; ẋi , ẏi ) = (xi, ẋi; yi, ẏi)

(for more details, see [12, 20]).
Now, suppose that (E, [[·, ·]], ρ) is a Lie algebroid of rank n over a manifold M of

dimension m and that τ : E → M is the vector bundle projection.

Lemma 4.1. Let (b, v) be a point in (LτE)a , with a ∈ Ex , that is, τ τ (b, v) = a. Then, there
exists one and only one tangent vector v̄ ∈ TbE such that:

(i) v̄(f v) = (dEf )(x)(a), and
(ii) v̄(θ̂ ) = v(θ̂) + (dEθ)(x)(a, b)

for all f ∈ C∞(M) and θ ∈ �(E∗).

Proof. Conditions (i) and (ii) determine a vector on E provided that they are compatible.
To prove compatibility, we take f ∈ C∞(M) and θ ∈ �(E∗). Then,

v̄(f̂ θ) = v̄(f vθ̂) = (v̄(f v))θ̂(b) + f v(b)(v̄(θ̂ )) = (dEf )(x)(a)θ(x)(b) + f (x)v̄(θ̂ ),

where x = τ(a) = τ(b), and on the other hand,

v(f̂ θ) + (dE(f θ))(x)(a, b) = (v(f v))θ̂(a) + f v(a)v(θ̂) + (dEf ∧ θ)(x)(a, b)

+ f (x)(dEθ)(x)(a, b)

= f (x)[v(θ̂) + (dEθ)(x)(a, b)] + (dEf )(x)(a)θ(x)(b),

which are equal. �

The tangent vector v̄ in the above lemma 4.1 projects to ρ(a) since

((Tbτ )(v̄))f = v̄(f ◦ τ) = v̄(f v) = (dEf )(x)(a) = ρ(a)f,
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for all functions f ∈ C∞(M), and thus (Tbτ )(v̄) = ρ(a). It follows that (a, v̄) is an element
of (LτE)b, and we have defined a map from LτE to LτE.

Theorem 4.2. The map σE : LτE −→ LτE given by

σE(b, v) = (a, v̄),

where v̄ is the tangent vector whose existence is ensured by lemma 4.1 is a smooth involution
interwining the projections τ τ and pr1, that is

(i) σ 2
E = Id, and

(ii) pr1 ◦ σE = τ τ .

Proof. We will find its coordinate expression. Suppose that (xi) are local coordinates on an
open subset U of M, that {eα} is a basis of sections of the vector bundle τ−1(U) → U and that
(xi, yα; zα, vα) are the coordinates of (b, v), so that (xi, yα) are the coordinates of a, (xi, zα)

are the coordinates of b and v = ρi
αzα ∂

∂xi + vα ∂
∂yα . Then v̄ = ρi

αyα ∂
∂xi + v̄α ∂

∂yα where we have
to determine v̄α . Denote by {eα} the dual basis of {eα}. Applying v̄ to yα = êα and taking into
account the definition of v̄ we get

v̄α = v̄(yα) = v(yα) + (dEeα)(x)(a, b) = vα − Cα
βγ yβzγ .

Therefore, in coordinates

σE(xi, yα; zα, vα) = (
xi, zα; yα, vα + Cα

βγ zβyγ
)

(4.1)

which proves that σE is smooth.
Moreover τ τ (b, v) = a and pr1(σE(b, v)) = pr1(a, v̄) = a. Thus, (ii) holds. Finally,

σE is an involution. In fact, if (b, v) ∈ (LτE)a then

σ 2
E(b, v) = σE(a, v̄) = (b, ¯̄v)

and ¯̄v = v because both project to ρ(b) and over linear functions

¯̄v(θ̂) = v̄(θ̂ ) + (dEθ)(x)(b, a) = v(θ̂) + (dEθ)(x)(a, b) + (dEθ)(x)(b, a) = v(θ̂),

which concludes the proof. �

Definition 4.3. The map σE will be called the canonical involution associated with the Lie
algebroid E.

If E is the standard Lie algebroid TM then σE ≡ σTM is the usual canonical involution
σTM : T (TM) → T (TM). In this case the canonical involution has the following interpretation
(see [45]). Let χ : R2 −→ M be a map locally defined in a neighbourhood of the origin in
R2. We can consider χ as an one-parameter family of curves in two alternative ways. If (s, t)

are the coordinates in R2, then we can consider the curve χt : s �→ χ(s, t), for fixed t. If we
take the tangent vector at s = 0 for every t we get a curve A(t) = dχt

ds

∣∣
s=0 = ∂χ

∂s
(0, t) in TM

whose tangent vector at t = 0 is

v = Ȧ(0) = d

dt

dχt

ds

∣∣∣
s=0

∣∣∣
t=0

= ∂

∂t

∂χ

∂s
(0, 0).

v is a tangent vector to TM at a = A(0). On the other hand, we can consider the curve
χs : t �→ χ(s, t), for fixed s. If we take the tangent vector at t = 0 for every s we get a curve
B(s) = dχs

dt

∣∣
t=0 = ∂χ

∂t
(s, 0) in TM whose tangent vector at s = 0 is

v̄ = Ḃ(0) = d

ds

dχs

dt

∣∣∣
t=0

∣∣∣
s=0

= ∂

∂s

∂χ

∂t
(0, 0).
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v̄ is a tangent vector to TM at b = B(0). We have that v ∈ Ta(TM) projects to b and
v̄ ∈ Tb(TM) projects to a. The canonical involution on TM maps one of these vectors into the
other one, that is, σTM(v) = v̄. Note that in terms of the tangent map T χ the curves A and B
are given by

A(t) = T χ

(
∂

∂s

∣∣∣
(0,t)

)
and B(s) = T χ

(
∂

∂t

∣∣∣
(s,0)

)
.

We look for a similar description in the case of an arbitrary Lie algebroid. For that we consider
a morphism � : T R2 −→ E, locally defined in τ−1

R2 (O) for some open neighbourhood O of the

origin, from the standard Lie algebroid τR2 : T R2 −→ R2 to our Lie algebroid τ : E −→ M

and denote by χ the base map χ : R2 −→ M , locally defined in O. (The map � plays the
role of T χ in the standard case.)

The vector fields
{

∂
∂s

, ∂
∂t

}
are a basis of �(T R2) with dual basis {ds, dt}. Thus we have

the curves A : R −→ E and B : R −→ E given by

A(t) = �

(
∂

∂s

∣∣∣
(0,t)

)
and B(s) = �

(
∂

∂t

∣∣∣
(s,0)

)
.

Then (B(0), Ȧ(0)) is an element of (LτE)A(0) and (A(0), Ḃ(0)) is an element of (LτE)B(0)

and the canonical involution maps one into the other. Indeed, let us write a = A(0), b =
B(0), v = Ȧ(0) and v̄ = Ḃ(0). Then, applying the equality T χ = ρ ◦ � to ∂

∂t

∣∣
(0,0)

we get

that ρ(b) = ∂χ

∂t
(0, 0) and thus

(Taτ )(v) = (Taτ )(Ȧ(0)) = d(τ ◦ A)

dt

∣∣∣
t=0

= ∂χ

∂t
(0, 0) = ρ(b),

which proves that (b, v) ∈ LτE is an element of (LτE)a . Similarly, applying T χ = ρ ◦ � to
∂
∂s

∣∣
(0,0)

we get that ρ(a) = ∂χ

∂s
(0, 0) and thus

(Tbτ )(v̄) = (Tbτ )(Ḃ(0)) = d(τ ◦ B)

ds

∣∣∣
s=0

= ∂χ

∂s
(0, 0) = ρ(a),

which proves that (a, v̄) ∈ LτE is an element of (LτE)b. Finally, to prove that σE(b, v) =
(a, v̄) we just need to prove that v̄(θ̂ ) = v(θ̂) + (dEθ)(x)(a, b), for every θ ∈ �(E∗), with
x = τ(a) = τ(b). Applying the condition (�, χ)∗(dEθ) = dT R2

((�, χ)∗θ) to ∂
∂s

∣∣
(0,0)

and
∂
∂t

∣∣
(0,0)

, we have

(dEθ)(x)(a, b) = ∂

∂s
θ(B(s))

∣∣∣
s=0

− ∂

∂t
θ(A(t))

∣∣∣
t=0

= Ḃ(0)(θ̂) − Ȧ(0)(θ̂) = v̄(θ̂ ) − v(θ̂),

which proves σE(b, v) = (a, v̄).
Next, we see that σE is a morphism of Lie algebroids where on pr1 : LτE −→ E we

have to consider the action Lie algebroid structure that we are going to explain.
It is well known (see, for instance, [12]) that the tangent bundle to E, TE, is a vector bundle

over TM with vector bundle projection the tangent map to τ , T τ : TE → TM. Moreover, if X
is a section of τ : E → M then the tangent map to X

T X : TM → TE

is a section of the vector bundle T τ : TE → TM. We may also consider the section
X̂0 : TM → TE of T τ : TE → TM given by

X̂0(u) = (Tx0)(u) + X(x)v0(x) (4.2)

for u ∈ TxM , where 0 : M → E is the zero section of E and v
0(x) : Ex → T0(x)(Ex) is the

canonical isomorphism between Ex and T0(x)(Ex).
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If {eα} is a local basis of �(E) then
{
T eα, ê0

α

}
is a local basis of �(TE). Now, suppose

that (xi) are local coordinates on an open subset U of M and that {eα} is a basis of the vector
bundle τ−1(U) → U . Denote by (xi, yα) (respectively, (xi, ẋi) and (xi, yα; ẋi , ẏα)) the
corresponding coordinates on the open subset τ−1(U) of E (respectively, τ−1

M (U) of TM and
τE(τ−1(U)) of TE, τM : TM → M and τE : TE → E being the canonical projections). Then,
the local expression of T τ : TE → TM is

(T τ)(xi, yα; ẋi , ẏα) = (xi, ẋi )

and the sum and product by real numbers in the vector bundle T τ : TE → TM are locally
given by

(xi, yα; ẋi , ẏα) ⊕ (xi, ȳα; ẋi , ˙̄yα
) = (xi, yα + ȳα; ẋi , ẏα + ˙̄yα

)

λ · (xi, yα; ẋi , ẏα) = (xi, λyα; ẋi , λẏα).

Moreover, if X is a section of the vector bundle τ : E → M and

X = Xαeα,

then

T X(xi, ẋi) =
(

xi, Xα; ẋi , ẋi ∂Xα

∂xi

)
,

(4.3)
X̂0(xi, ẋi) = (xi, 0; ẋi , Xα).

Next, following [26] we define a Lie algebroid structure ([[·, ·]]T , ρT ) on the vector bundle
T τ : TE → TM. The anchor map ρT is given by ρT = σTM ◦ T (ρ) : TE → T (TM), σTM :
T (TM) → T (TM) being the canonical involution and T (ρ) : TE → T (TM) the tangent map
to ρ : E → TM. The Lie bracket [[·, ·]]T on the space �(TE) is characterized by the following
equalities,

[[T X, T Y ]]T = T [[X, Y ]], [[T X, Ŷ 0]]T = ̂[[X, Y ]]
0

(4.4)
[[X̂0, Ŷ 0]]T = 0,

for X, Y ∈ �(E).
Now, we consider the pull-back vector bundle ρ∗(TE) of T τ : TE → TM over the anchor

map ρ : E → TM. Note that

ρ∗(TE) = {(b, v) ∈ E × TE/ρ(b) = (T τ)(v)},
that is, the total space of the vector bundle is just LτE, the prolongation of E over τ . Thus,
ρ∗(TE) is a vector bundle over E with vector bundle projection pr1 : ρ∗(TE) → E given by
pr1(a, u) = a, for (a, u) ∈ ρ∗(TE).

If (xi) are local coordinates on M, {eα} is a local basis of sections of the vector bundle
τ : E → M and (xi, yα) (respectively, (xi, yα; zα, vα)) are the corresponding coordinates on
E (respectively, LτE ≡ ρ∗(TE)) then the local expressions of the vector bundle projection,
the sum and the product by real numbers in the vector bundle ρ∗(TE) → E are

pr1(x
i, yα; zα, vα) = (xi, zα)

(xi, yα; zα, vα) ⊕ (xi, ȳα; zα, v̄α) = (xi, yα + ȳα; zα, vα + v̄α)

λ(xi, yα; zα, vα) = (xi, λyα; zα, λvα).

Moreover, we have the following result.

Theorem 4.4. There exists a unique action � : �(TE) → X(E) of the Lie algebroid
(TE, [[, ]]T , ρT ) over the anchor map ρ : E → TM such that

�(T X) = Xc, �(X̂0) = Xv, (4.5)
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for X ∈ �(E), where Xc (respectively, Xv) is the complete lift (respectively, the vertical lift)
of X. In fact, if {eα} is a local basis of �(E) and X̄ is a section of T τ : TE → TM such that

X̄ = f̄ αT (eα) + ḡαê0
α

with f̄ α, ḡα local real functions on TM, then

�(X̄) = (f̄ α ◦ ρ)ec
α + (ḡα ◦ ρ)ev

α.

Proof. A direct computation, using (2.2), (2.25) and (4.3), proves that

Tρ ◦ Xc = ρT ◦ T X ◦ ρ, Tρ ◦ Xv = ρT ◦ X̂0 ◦ ρ, (4.6)

for X ∈ �(E), that is, the vector field Xc (respectively, Xv) is ρ-projectable to the vector field
ρT (T X) (respectively, ρT (X̂0)) on TM.

Now, from (2.22), (4.4) and (4.6), we deduce the result. �

Corollary 4.5. There exists a Lie algebroid structure
(
[[·, ·]]T�, ρT

�

)
on the vector bundle

ρ∗(TE) → E such that if hi(X̄i ◦ ρ) and sj (Ȳj ◦ ρ) are two sections of ρ∗(TE) → E with
hi, sj ∈ C∞(E) and X̄i, Ȳj sections of T τ : TE → TM then

ρT
�(hi(X̄i ◦ ρ)) = hi�(X̄i),

[[hi(X̄i ◦ ρ), sj (Ȳj ◦ ρ)]]T� = hisj ([[X̄i, Ȳj ]]T ◦ ρ) + hi�(X̄i)(s
j )(Ȳj ◦ ρ)

− sj�(Ȳj )(h
i)(X̄i ◦ ρ).

Next, we will give a local description of the Lie algebroid structure
(
[[·, ·]]T�, ρT

�

)
. For this

purpose, we consider local coordinates (xi) on M and a local basis {eα} of �(E). Denote
by ρi

α and C
γ

αβ the structure functions of E with respect to (xi) and {eα}, by (xi, yα; zα, vα)

the corresponding coordinates on ρ∗(TE) ≡ LτE and by (xi, yα; ẋi , ẏα) the corresponding
coordinates on TE.

If X is a section of E and X = Xαeα , we may introduce the sections T ρX and X̂ρ of
ρ∗(TE) given by

T ρX = T X ◦ ρ, X̂ρ = X̂0 ◦ ρ.

We have that (see (4.3))

T ρX(xi, zα) =
(

xi, Xα; ρi
αzα, ρi

βzβ ∂Xα

∂xi

)
, X̂ρ(xi, zα) = (xi, 0; zα,Xα). (4.7)

Thus,
{
T ρeα, êρ

α

}
is a local basis of �(ρ∗(TE)). Moreover, from (4.4), (4.5) and corollary 4.5,

it follows that

[[T ρX, T ρY ]]T� = T ρ[[X, Y ]], [[T ρX, Ŷ ρ]]T� = ̂[[X, Y ]]
ρ
, [[X̂ρ, Ŷ ρ]]T� = 0,

ρT
�(T ρX) = Xc, ρT

�(X̂ρ) = Xv, (4.8)

for X, Y ∈ �(E). In particular,

[[T ρeα, T ρeβ]]T� = T ρ[[eα, eβ ]], [[T ρeα, ê
ρ
β ]]T� = ̂[[eα, eβ ]]ρ, [[êρ

α, ê
ρ
β ]]T� = 0,

ρT
�(T ρeα) = ec

α, ρT
�(êα

ρ) = ev
α. (4.9)

Therefore,

ρT
�(xi, yα; zα, vα) = (

xi, zα; ρi
αyα, vγ + C

γ

αβyβzα
)
, (4.10)

[[T ρeα, T ρeβ]]T�(xi, zα) = C
γ

αβ(T ρeγ ) +

(
ρi

ν

∂C
γ

αβ

∂xi
zν

)
êρ
γ ,

(4.11)[[
T ρeα, ê

ρ
β

]]T

�
(xi, zα) = C

γ

αβ êρ
γ ,

[[
êρ
α, ê

ρ
β

]]T

�
(xi, zα) = 0.
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Remark 4.6. If E is the standard Lie algebroid TM then ρ∗(TE) is the tangent bundle
to TM and the vector bundle ρ∗(TE) → TM is T (TM) with vector bundle projection
T τM : T (TM) → TM, where τM : TM → M is the canonical projection. Moreover,
following [26], one may consider the tangent Lie algebroid structure ([·, ·]T , σTM) on the
vector bundle T τM : T (TM) → TM and it is easy to prove that the Lie algebroid structures
([·, ·]T , σTM) and

(
[·, ·]T�, (Id)T�

)
coincide.

Next, we will prove that the canonical involution is a morphism of Lie algebroids.

Theorem 4.7. The canonical involution σE is the unique Lie algebroid morphism
σE : LτE → ρ∗(TE) between the Lie algebroids (LτE, [[·, ·]]τ , ρτ ) and

(
ρ∗(TE), [[·, ·]]T�, ρT

ψ

)
such that σE is an involution, that is, σ 2

E = Id.

Proof. Using (2.27), (2.32), (4.1) and (4.7), we deduce that

σE ◦ Xc = T ρX, σE ◦ Xv = X̂ρ, (4.12)

for X ∈ �(E), where Xc and Xv are the complete and vertical lift, respectively, of X to
LτE. Thus, from (2.23), (2.24) and (4.8), we obtain that σE is a morphism between the Lie
algebroids (LτE, [[·, ·]]τ , ρτ ) and

(
ρ∗(TE), [[·, ·]]T�, ρT

�

)
.

Moreover, if σ ′
E is another morphism which satisfies the above conditions then, using that

σ ′
E is a vector bundle morphism and the fact that σ ′

E is an involution, we deduce that the local
expression of σ ′

E is

σ ′
E(xi, yγ ; zγ , vγ ) = (xi, zγ ; yγ , gγ ),

where gγ is a linear function in the coordinates (zγ , vγ ). Now, since

ρT
� ◦ σ ′

E = ρτ

we conclude that (see (2.34) and (4.10))

gγ = vγ + C
γ

αβzαyβ, for all γ.

Therefore, σE = σ ′
E . �

5. Tulczyjew’s triple on Lie algebroids

Let (E, [[, ]], ρ) be a Lie algebroid of rank n over a manifold M of dimension m. Denote
by τ : E → M the vector bundle projection of E and by τ ∗ : E∗ → M the vector bundle
projection of the dual bundle E∗ to E. Then, TE∗ is a vector bundle over TM with vector bundle
projection T τ ∗ : TE∗ → TM and we may consider the pullback vector bundle ρ∗(TE∗) of
T τ ∗ : TE∗ → TM over ρ, that is,

ρ∗(TE∗) = {(b, v) ∈ E × TE∗/ρ(b) = (T τ ∗)(v)}.
It is clear that ρ∗(TE∗) is the prolongation Lτ ∗

E of E over τ ∗ (see section 3.1). Thus,
Lτ ∗

E = ρ∗(TE∗) is a vector bundle over E with the vector bundle projection

pr1 : ρ∗(TE∗) → E, (b, v) → pr1(b, v) = b.

Note that if b0 ∈ E then

(pr1)
−1(b0) ∼= (T τ ∗)−1(ρ(b0)).

Moreover, if (xi) are coordinates on M, {eα} is a local basis of �(E), (xi, yα) are the
corresponding coordinates on E and (xi, yα; zα, vα) are the corresponding ones on ρ∗(TE∗) ≡
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Lτ ∗
E, then the local expression of the vector bundle projection pr1 : ρ∗(TE∗) ≡ Lτ ∗

E → E,
the sum and the product by real numbers in the vector bundle pr1 : ρ∗(TE∗) ≡ Lτ ∗

E → E

are:

pr1(x
i, yα; zα, vα) = (xi, zα),

(xi, yα; zα, vα) ⊕ (xi, ȳα; zα, v̄α) = (xi, yα + ȳα; zα, vα + v̄α),

λ(xi, yα; zα, vα) = (xi, λyα; zα, λvα),

for (xi, yα; zα, vα), (xi, ȳα; zα, v̄α) ∈ ρ∗(TE∗) and λ ∈ R.
Next, we consider the following vector bundles:

• (τ τ )∗ : (LτE)∗ → E (the dual vector bundle to the prolongation of E over τ ).
• pr1 : ρ∗(TE∗) → E (the pull-back vector bundle of T τ ∗ : TE∗ → TM over ρ).
• τ τ ∗

: Lτ ∗
E → E∗ (the prolongation of E over τ ∗ : E∗ → M).

• (τ τ ∗
)∗ : (Lτ ∗

E)∗ → E∗ (the dual vector bundle to τ τ ∗
: Lτ ∗

E → E∗).

Then, the aim of this section is to introduce two vector bundle isomorphisms

AE : ρ∗(TE∗) → (LτE)∗, �E∗ : Lτ ∗
E → (Lτ ∗

E)∗

in such a way that the following diagram is commutative

E

�
�

�
�

�
��

�
�

�
�

�
��

E∗

(τ τ )∗ τ τ ∗
(τ τ ∗

)∗

�
�

�
�

�
��

pr1

�
�

�
�

�
��

(LτE)∗
AE �E∗� ρ∗(TE∗) ≡ Lτ ∗

E � (Lτ ∗
E)∗

(5.1)

First, we will define the isomorphism �E∗ .
If 	E is the canonical symplectic section of Lτ ∗

E then �E∗ : Lτ ∗
E → (Lτ ∗

E)∗ is the
vector bundle isomorphism induced by 	E , that is,

�E∗(b, v) = i(b, v)(	E(τ τ ∗
(b, v))),

for (b, v) ∈ Lτ ∗
E.

If (xi) are local coordinates on M, {eα} is a local basis of sections of �(E) and we
consider the local coordinates (xi, yα; zα, vα) on Lτ ∗

E (see section 3.1) and the corresponding
coordinates on the dual vector bundle (Lτ ∗

E)∗ then, using (3.7), we deduce that the local
expression of �E∗ in these coordinates is

�E∗(xi, yα; zα, vα) = (
xi, yα;−vα − C

γ

αβyγ zβ, zα
)

where C
γ

αβ are the structure functions of the Lie bracket [[·, ·]] with respect to the basis {eα}.
Now, we define the vector bundle isomorphism

AE : ρ∗(TE∗) → (LτE)∗

as follows.
Let 〈·, ·〉 : E ×M E∗ → R be the natural pairing given by

〈a, a∗〉 = a∗(a),

for a ∈ Ex and a∗ ∈ E∗
x , with x ∈ M . If b ∈ E and

(b, ua) ∈ ρ∗(TE)b, (b, va∗) ∈ ρ∗(TE∗)b
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then

(ua, va∗) ∈ T(a,a∗)(E ×M E∗) = {(u′
a, v

′
a∗) ∈ TaE × Ta∗E∗/(Taτ )(u′

a) = (Ta∗τ ∗)(v′
a∗)}

and we may consider the map

T̃ 〈·, ·〉 : ρ∗(TE) ×E ρ∗(TE∗) → R

defined by

T̃ 〈·, ·〉((b, ua), (b, va∗)) = dt〈a,a∗〉((T(a,a∗)〈·, ·〉)(ua, va∗)),

where t is the usual coordinate on R and T 〈 , 〉 : T (E ×M E∗) → T R is the tangent map to
〈 , 〉 : E ×M E∗ → R.

If (xi, yα; zα, vα) are local coordinates on LτE ≡ ρ∗(TE) as in section 2.2.1 then the

local expression of T̃ 〈·, ·〉 is

T̃ 〈·, ·〉((xi, yα; zα, vα), (xi, yα; zα, vα)) = yαvα + yαvα. (5.2)

Thus, the pairing T̃ 〈·, ·〉 is non-singular and, therefore it induces an isomorphism between the

vector bundles ρ∗(TE) → E and ρ∗(TE∗)∗ → E which we also denote by T̃ 〈·, ·〉, that is,

T̃ 〈·, ·〉 : ρ∗(TE) → ρ∗(TE∗)∗.

From (5.2), it follows that

T̃ 〈·, ·〉(xi, yγ ; zγ , vγ ) = (xi, vγ ; zγ , yγ ). (5.3)

Next, we consider the isomorphism of vector bundles A∗
E : LτE → ρ∗(TE∗)∗ given by

A∗
E = T̃ 〈·, ·〉 ◦ σE

σE : LτE → ρ∗(TE) being the canonical involution introduced in section 4. Using (5.3) and
theorem 4.7, we deduce that the local expression of the map A∗

E is

A∗
E(xi, yγ ; zγ , vγ ) = (

xi, vγ + C
γ

αβyβzα; yγ , zγ
)
. (5.4)

Finally, the isomorphism AE : ρ∗(TE∗) → (LτE)∗ between the vector bundles ρ∗(TE∗) → E

and (LτE)∗ → E is just the dual map to A∗
E : LτE → ρ∗(TE∗)∗. From (5.4) we conclude

that

AE(xi, yα; zα, vα) = (
xi, zα; vα + C

γ

αβyγ zβ, yα

)
. (5.5)

Diagram (5.1) will be called Tulczyjew’s triple for the Lie algebroid E.

Remark 5.1. If E is the standard Lie algebroid TM then the vector bundle isomorphisms
ATM : T (T ∗M) → T ∗(TM) and �T ∗M : T (T ∗M) → T ∗(T ∗M) were considered by Tulczyjew
[45, 46] and diagram (5.1) is just Tulczyjew’s triple.

6. The prolongation of a symplectic Lie algebroid

First of all, we will introduce the definition of a symplectic Lie algebroid.

Definition 6.1. A Lie algebroid (E, [[·, ·]], ρ) over a manifold M is said to be symplectic if it
admits a symplectic section 	, that is, 	 is a section of the vector bundle ∧2E∗ → M such
that:
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(i) For all x ∈ M , the 2-form 	(x) : Ex ×Ex → R on the vector space Ex is nondegenerate
and

(ii) 	 is a 2-cocycle, i.e., dE	 = 0.

Example 6.2.

(i) Let (M,	) be a symplectic manifold. Then the tangent bundle TM to M is a symplectic
Lie algebroid.

(ii) Let (E, [[·, ·]], ρ) be an arbitrary Lie algebroid and ([[·, ·]]τ ∗
, ρτ ∗

) be the Lie algebroid
structure on the prolongation Lτ ∗

E of E over the bundle projection τ ∗ : E∗ → M of the
dual vector bundle E∗ to E. Then (Lτ ∗

E, [[·, ·]]τ ∗
, ρτ ∗

) is a symplectic Lie algebroid and
	E is a symplectic section of Lτ ∗

E,	E being the canonical symplectic 2-section of Lτ ∗
E

(see section 3.2).

In this section, we will prove that the prolongation of a symplectic Lie algebroid over the
vector bundle projection is a symplectic Lie algebroid.

For this purpose, we will need some previous results.
Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and τ : E → M be the vector

bundle projection. Denote by ([[·, ·]]τ , ρτ ) the Lie algebroid structure on the prolongation LτE

of E over τ . If pr1 : E × TE → E is the canonical projection on the first factor then the pair
(pr1|Lτ E, τ ) is a morphism between the Lie algebroids (LτE, [[·, ·]]τ , ρτ ) and (E, [[·, ·]], ρ)

(see section 2.1.1). Thus, if α ∈ �(∧kE∗) we may consider the section αv of the vector bundle
∧k(LτE)∗ → E defined by

αv = (pr1|Lτ E, τ )∗(α). (6.1)

αv is called the vertical lift to LτE of α and we have that

dLτ Eαv = (dEα)v. (6.2)

Note that if {eα} is a local basis of �(E) and {eα} is the dual basis to {eα} then

(eα)v((eβ)c) = δαβ, (eα)v((eβ)v) = 0,

for all α and β. Moreover, if γ ∈ �(∧kE∗) and

γ = γα1,...,αk
eα1 ∧ · · · ∧ eαk

we have that

γ v = (
γα1,...,αk

◦ τ
)
(eα1)v ∧ · · · ∧ (eαk )v.

Now, suppose that f ∈ C∞(M). Then, one may consider the complete lift f c of f to E. f c

is a real C∞-function on E (see (2.21)). This construction may be generalized as follows.

Proposition 6.3. If α is a section of the vector bundle ∧kE∗ → M , then there exists a unique
section αc of the vector bundle ∧k(LτE)∗ → E such that

αc(Xc
1, . . . , X

c
k

) = α(X1, . . . , Xk)
c,

αc(Xv
1, X

c
2, . . . , X

c
k

) = α(X1, . . . , Xk)
v, (6.3)

αc(Xv
1, . . . , X

v
s , X

c
s+1, . . . , X

c
k

) = 0, if 2 � s � k,

for X1, . . . , Xk ∈ �(E). Furthermore,

dLτ Eαc = (dEα)c. (6.4)

Proof. We recall that if {Xi} is a local basis of �(E) then
{
Xc

i , X
v
i

}
is a local basis of

�(LτE).
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On the other hand, if X ∈ �(E) and f, g ∈ C∞(M) then

(f X)c = f cXv + f vXc, (f X)v = f vXv,

(fg)c = f cgv + f vgc, (fg)v = f vgv.

Using the above facts, we deduce the first part of the proposition.
Now, if α ∈ �(E∗) then, from (2.24) and (6.3), it follows that

(dLτ Eαc)(Xc, Y c) = ((dEα)(X, Y ))c = (dEα)c(Xc, Y c)

(dLτ Eαc)(Xv, Y c) = ((dEα)(X, Y ))v = (dEα)c(Xv, Y c)

(dLτ Eαc)(Xv, Y v) = 0 = (dEα)c(Xv, Y v)

for X, Y ∈ �(E). Thus,

dLτ Eαc = (dEα)c, for α ∈ �(E∗). (6.5)

In addition, using (2.24) and (6.3), we have that

dLτ Ef c = (dEf )c, for f ∈ C∞(M) = �(�0E∗). (6.6)

Moreover, using (6.1) and (6.3) we obtain that

(f α1 ∧ · · · ∧ αr)
c = f cαv

1 ∧ · · · ∧ αv
r + f v

r∑
i=1

αv
1 ∧ · · · ∧ αc

i ∧ · · · ∧ αv
r (6.7)

for αi ∈ �(∧ki E∗), i ∈ {1, . . . , r}. Therefore, from (6.2), (6.5), (6.6) and (6.7) we conclude
that (6.4) holds. �

The section αc of the vector bundle ∧k((LτE)∗) → E is called the complete lift of α.
If {eα} is a local basis of �(E) and {eα} is the dual basis to {eα} then

(eα)c((eβ)c) = 0, (eα)c((eβ)v) = δαβ,

for all α and β. Furthermore, if γ ∈ �(∧kE∗) and γ = γα1···αk
eα1 ∧ · · · ∧ eαk , we have that

γ c = γ c
α1···αk

(eα1)v ∧ · · · ∧ (eαk )v +
k∑

i=1

(
γα1···αk

◦ τ
)
(eα1)v ∧ · · · ∧ (eαi )c ∧ · · · ∧ (eαk )v.

Thus, if (xi) are local coordinates defined on an open subset U of M and {eα} is a local basis
of �(E) on U then

γ c(xi, yα) = ρi
β

∂γα1···αk

∂xi
yβ(eα1)v ∧ · · · ∧ (eαk )v

+
∑

j

(
γα1···αk

◦ τ
)
(eα1)v ∧ · · · ∧ (eαj )c ∧ · · · ∧ (eαk )v,

where (xi, yα) are the corresponding local coordinates on E and ρi
β are the components of the

anchor map ρ with respect to (xi) and to {eα}.
Note that

{(eα)c, (eα)v}
is a local basis of �((LτE)∗). In fact, {(eα)c, (eα)v} is the dual basis to the local basis of
�(LτE)

{(eα)v, (eα)c}.
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Remark 6.4. If E is the standard Lie algebroid τM : TM → M and α is a k-form on M, that
is, α ∈ �(∧k(T ∗M)) then LτM E = T (TM) and αc is the usual complete lift of α to TM (see
[47]).

Next, we will prove the main result of this section.

Theorem 6.5. Let (E, [[·, ·]], ρ) be a symplectic Lie algebroid with symplectic section 	 and
τ : E → M be the vector bundle projection of E. Then, the prolongation LτE of E over τ is a
symplectic Lie algebroid and the complete lift 	c of 	 to LτE is a symplectic section of LτE.

Proof. It is clear that

dLτ E	c = (dE	)c = 0.

Moreover, if {eα} is a local basis of �(E) on an open subset U of M and {eα} is the dual basis
to {eα} then

	 = 1
2	αβeα ∧ eβ

with 	αβ = −	βα real functions on U.
Thus, using (6.7), we have that

	c = 1
2	c

αβ(eα)v ∧ (eβ)v + 	v
αβ(eα)c ∧ (eβ)v.

Therefore, the local matrix associated with 	c with respect to the basis {(eα)c, (eα)v} is(
0 (	αβ)v

−(	αβ)v (	αβ)c

)
Consequently, the rank of 	c is 2n and 	c is nondegenerate. �

Remark 6.6. Let (M,	) be a symplectic manifold. Then, using theorem 6.5, we deduce
a well-known result (see [46]): the tangent bundle to M is a symplectic manifold and the
complete lift 	c of 	 to TM is a symplectic 2-form on TM.

Example 6.7. Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension
m and τ : E → M be the vector bundle projection. Denote by λE and 	E the Liouville
section and the canonical symplectic section of the prolongation Lτ ∗

E of E over the vector
bundle projection τ ∗ : E∗ → M of the dual vector bundle E∗ to E.

On the other hand, if (xi) are coordinates on M and {eα} is a local basis of �(E)

then we may consider the corresponding coordinates (xi, yα) (respectively, (xi, yα; zα, vα))
of E∗ (respectively, Lτ ∗

E) and the corresponding local basis {ẽα, ēα} of �(Lτ ∗
E) (see

section 3.1). Thus, if Lτ τ∗
(Lτ ∗

E) is the prolongation of Lτ ∗
E over the vector bundle projection

τ τ ∗
: Lτ ∗

E → E∗ then{
ẽc
α, ēc

α, ẽv
α, ēv

α

}
is a local basis of �(Lτ τ∗

(Lτ ∗
E)) and if {ẽα, ēα} is the dual basis to {ẽα, ēα} then

{(ẽα)v, (ēα)v, (ẽα)c, (ēα)c}
is the dual basis of

{
ẽc
α, ēc

α, ẽv
α, ēv

α

}
.

Moreover, using (3.7) and (6.7), we deduce that the local expressions of the complete lifts
λc

E and 	c
E of λE and 	E are

λc
E(xi, yα; zα, vα) = yc

α(ẽα)v + yv
α(ẽα)c,

	c
E(xi, yα; zα, vα) = (ẽα)c ∧ (ēα)v + (ẽα)v ∧ (ēα)c + 1

2

(
C

γ

αβyγ

)c
(ẽα)v ∧ (ẽβ)v

+ C
γ

αβyγ (ẽα)c ∧ (ẽβ)v.
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Therefore, from (3.2), we conclude that

λc
E(xi, yα; zα, vα) = yα(ẽα)c + vα(ẽα)v,

	c
E(xi, yα; zα, vα) = (ẽα)c ∧ (ēα)v + (ẽα)v ∧ (ēα)c +

1

2

(
ρi

µ

∂C
γ

αβ

∂xi
zµyγ + C

γ

αβvγ

)
(ẽα)v ∧ (ẽβ)v

+ C
γ

αβyγ (ẽα)c ∧ (ẽβ)v, (6.8)

ρi
α and C

γ

αβ being the structure functions of the Lie algebroid (E, [[·, ·]], ρ) with respect to the
coordinates (xi) and to the basis {eα}.

7. Lagrangian Lie subalgebroids in symplectic Lie algebroids

First of all, we will introduce the notion of a Lagrangian Lie subalgebroid of a symplectic Lie
algebroid.

Definition 7.1. Let (E, [[·, ·]], ρ) be a symplectic Lie algebroid with symplectic section 	 and
j : F → E, i : N → M be a Lie subalgebroid (see remark 2.2). Then, the Lie subalgebroid
is said to be Lagrangian if j (Fx) is a Lagrangian subspace of the symplectic vector space
(Ei(x), 	i(x)), for all x ∈ N .

Definition 7.1 implies that:

(i) rank F = 1
2 rank E and

(ii) (	(i(x)))|j (Fx)×j (Fx) = 0, for all x ∈ N .

Remark 7.2. Let (M,	) be a symplectic manifold, S be a submanifold of M and i : S → M

be the canonical inclusion. Then, the standard Lie algebroid τM : TM → M is symplectic
and i : S → M, j = T i : T S → TM is a Lie subalgebroid of τM : TM → M . Moreover, one
may prove that S is a Lagrangian submanifold of M in the usual sense if and only if the Lie
subalgebroid i : S → M, j = T i : T S → TM of τM : TM → M is Lagrangian.

Let (E, [[·, ·]], ρ) be a Lie algebroid over M. Then, the prolongation Lτ ∗
E of E over the

vector bundle projection τ ∗ : E∗ → M is a symplectic Lie algebroid. Moreover, if x is a point
of M and E∗

x is the fibre of E∗ over the point x, we will denote by

jx : TE∗
x → Lτ ∗

E, ix : E∗
x → E∗

the maps given by

jx(v) = (0(x), v), ix(α) = α

for v ∈ T E∗
x and α ∈ E∗

x , where 0 : M → E is the zero section of E. Note that if
v ∈ T E∗

x , (T τ ∗)(v) = 0 and thus (0(x), v) ∈ Lτ ∗
E.

On the other hand, if γ ∈ �(E∗) we will denote by Fγ the vector bundle over γ (M) given
by

Fγ = {(b, (T γ )(ρ(b))) ∈ E × TE∗/b ∈ E} (7.1)

and by jγ : Fγ → Lτ ∗
E and iγ : γ (M) → E∗ the canonical inclusions. Note that the pair

((Id, T γ ◦ ρ), γ ) is an isomorphism between the vector bundles E and Fγ , where the map
(Id, T γ ◦ ρ) : E → Fγ is given by

(Id, T γ ◦ ρ)(b) = (b, (T γ )(ρ(b))), for b ∈ E.

Thus, Fγ is a Lie algebroid over γ (M). Moreover, we may prove the following results.

Proposition 7.3. Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension
m and Lτ ∗

E be the prolongation of E over the vector bundle projection τ ∗ : E∗ → M .



Topical Review R281

(i) If x is a point of M then jx : TE∗
x → Lτ ∗

E and ix : E∗
x → E∗ is a Lagrangian Lie

subalgebroid of the symplectic Lie algebroid Lτ ∗
E.

(ii) If γ ∈ �(E∗) then jγ : Fγ → Lτ ∗
E and iγ : γ (M) → E∗ is a Lagrangian Lie

subalgebroid of the symplectic Lie algebroid Lτ ∗
E if and only if γ is a 1-cocycle for the

cohomology complex of the Lie algebroid E, that is, dEγ = 0.

Proof. (i) It is clear that the rank of the vector bundle τE∗
x

: TE∗
x → E∗

x is n = 1
2 rank (Lτ ∗

E).
Moreover, if (xi) are local coordinates on M, {eα} is a local basis of �(E), (xi, yα) are the
corresponding coordinates on E∗ and {ẽα, ēα} is the corresponding local basis of �(Lτ ∗

E)

then, from (3.1), it follows that

(jx, ix)
∗(ẽα) = 0, (jx, ix)

∗(ēα) = dTE∗
x (yα ◦ ix),

jx

(
∂

∂yα |µ

)
= ēα(µ), for all µ ∈ E∗

x . (7.2)

This, using (3.3), implies that jx : TE∗
x → Lτ ∗

E and ix : E∗
x → E∗ is a morphism of

Lie algebroids. Thus, since jx is injective and ix is an injective immersion, we deduce that
jx : TE∗

x → Lτ ∗
E and ix : E∗

x → E∗ is a Lie subalgebroid of Lτ ∗
E. Finally, from (3.7) and

(7.2), we conclude that

(	E(ix(µ)))|jx(TµE∗
x )×jx (TµE∗

x ) = 0,

for all µ ∈ E∗
x .

(ii) If γ is a section of E∗ then the Lie algebroids E → M and Fγ → γ (M) are isomorphic
and, under this isomorphism, the inclusions jγ and iγ are the maps (Id, T γ ◦ ρ) : E →
Lτ ∗

E and γ : M → E∗, respectively. Furthermore, it clear that the map (Id, T γ ◦ ρ) is
injective and that γ : M → E∗ is an injective immersion.

On the other hand, from theorem 3.4, we have that

((Id, T γ ◦ ρ), γ )∗(	E) = −dγ.

Therefore, the Lie subalgebroid jγ : Fγ → Lτ ∗
E and iγ : γ (M) → E∗ is Lagrangian if and

only if γ is a 1-cocycle. �

Remark 7.4. Using remark 7.2 and applying proposition 7.3 to the particular case when E is
the standard Lie algebroid TM, we deduce two well-known results (see, for instance, [1]):

(i) If 	TM is the canonical symplectic 2-form on T ∗M and x is a point of M then the
cotangent space to M at x, T ∗

x M , is a Lagrangian submanifold of the symplectic manifold
(T ∗M,	TM).

(ii) If γ : M → T ∗M is a 1-form on M then the submanifold γ (M) is Lagrangian in the
symplectic manifold (T ∗M,	M) if and only if γ is a closed 1-form.

Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M of dimension m and S
be a submanifold of E. Denote by τ : E → M the vector bundle projection, by i : S → E the
canonical inclusion and by τS : S → M the map given by

τS = τ ◦ i.

If there exists a natural number c such that

dim(ρ(EτS(x)) + (Txτ
S)(TxS)) = c, for all x ∈ S, (7.3)

then, using the results of section 2.1.1, one can consider the prolongation of the Lie algebroid
E over the map τS ,

LτS

E = {(b, v) ∈ E × T S/ρ(b) = (T τS)(v)},
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which is a Lie algebroid over S of rank n + s − c, where s = dim S. Moreover, the maps
(Id, T i) : LτS

E → LτE and i : S → E define a Lie subalgebroid of the prolongation of E
over the bundle projection τ , where (Id, T i) is the map given by

(Id, T i)(b, v) = (b, T i(v)), for (b, v) ∈ LτS

E.

Examples 7.5. (i) Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold M and X be a
section of E. Suppose that the submanifold S is X(M). Then, it is easy to prove that condition
(7.3) holds and that c is just m = dim M = dim S. Thus, one may consider the prolongation
LτS

E of E over the map τS : S = X(M) → M and the rank of the vector bundle LτS

E → S

is n.
Note that if x is a point of M, the fibre of LτS

E over X(x) ∈ S is the vector space

(LτS

E)X(x) = {(b, (TxX)(ρ(b)))/b ∈ Ex}.
Therefore, if Y is a section of E then, using (2.25), we deduce that

T X(ρ(Y )) = (Y c − [[X, Y ]]v) ◦ X,

where Zc (respectively, Zv) denotes the complete (respectively, vertical) lift of a section Z of
E to a section of the vector bundle TE → E. Consequently (see (2.23)),

T X(ρ(Y )) = {ρτ (Y c − [[X, Y ]]v)} ◦ X. (7.4)

Here, Zc (respectively, Zv) is the complete (respectively, vertical) lift of a section Z of E to a
section of the vector bundle LτE → E. Now, from (7.4), we obtain that

Y c
|S − [[X, Y ]]v

|S

is a section of the vector bundle Lτ s

E → S. Thus, if {eα} is a local basis of �(E) it follows
that {

ec
α|S − [[X, eα]]v

|S
}

is a local basis of �(LτS

E).
(ii) Let (E, [[·, ·]], ρ) be a Lie algebroid of rank n over a manifold of M of dimension m.

Denote by Lτ ∗
E the prolongation of E over the vector bundle projection τ ∗ : E∗ → M . Lτ ∗

E

is a Lie algebroid over E∗. On the other hand, let ρ∗(TE∗) be the pull-back of the vector
bundle T τ ∗ : TE∗ → TM over the anchor map ρ : E → TM. ρ∗(TE∗) is a vector bundle over
E. Moreover, as we know, the total spaces of these vector bundles coincide, that is,

ρ∗(TE∗) = Lτ ∗
E.

Now, suppose that X̃ is a section of the vector bundle ρ∗(TE∗) → E. Then, S = X̃(E)

is a submanifold of Lτ ∗
E of dimension m + n. Furthermore, if we consider on Lτ ∗

E the
Lie algebroid structure ([[·, ·]]τ ∗

, ρτ ∗
) (see section 3.1) then condition (7.3) holds for the

submanifold S and the natural number c is n+m = dim S. Thus, the prolongationL(τ τ∗
)S (Lτ ∗

E)

of the Lie algebroid (Lτ ∗
E, [[·, ·]]τ ∗

, ρτ ∗
) over the map τ τ ∗ ◦ i = (τ τ ∗

)S : S → Lτ ∗
E → E∗

is a Lie algebroid over S of rank 2n. In fact, if (xi) are local coordinates on an
open subset U of M, {eα} is a basis of τ−1(U) → U , (x, y) ≡ (xi, yα) (respectively
(x, y; z, v) ≡ (xi, yα; zα, vα)) are the corresponding coordinates on E (respectively, Lτ ∗

E)

and the local expression of X̃ in these coordinates is

X̃(x, y) = X̃(xi, yα) = (xi, X̃α; yα, X̃
′α)

then
{
ẽX̃
α , ēX̃

α

}
is a local basis of sections of L(τ τ∗

)S (Lτ ∗
E) → S, where

ẽX̃
α : S → Lτ ∗

E × T S, ēX̃
α : S → Lτ ∗

E × T S
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are defined by

ẽX̃
α (X̃(x, y)) =

(
ẽα((τ τ ∗

)S(X̃(x, y))) + ρi
α(x)

∂X̃β

∂xi |(x,y)
ēβ((τ τ ∗

)S(X̃(x, y))),

ρi
α(x)

∂

∂xi |X̃(x,y)
+ ρi

α(x)
∂X̃β

∂xi |(x,y)

∂

∂yβ |X̃(x,y)

+ ρi
α(x)

∂X̃′β

∂xi |(x,y)

∂

∂vβ |X̃(x,y)

)
,

(7.5)
ēX̃
α (X̃(x, y)) =

(
∂X̃β

∂yα |(x,y)

ēβ((τ τ ∗
)S(X̃(x, y))),

∂

∂zα |X̃(x,y)

+
∂X̃β

∂yα |(x,y)

∂

∂yβ |X̃(x,y)

+
∂X̃′β

∂yα |(x,y)

∂

∂vβ |X̃(x,y)

)
.

Here, ρi
α are the components of the anchor map with respect to (xi) and {eα} and {ẽα, ēα} is

the corresponding local basis of �(Lτ ∗
E). Using the local basis

{
ẽX̃
α , ēX̃

α

}
of �(L(τ τ∗

)S (Lτ ∗
E))

one may introduce, in a natural way, local coordinates
(
xi, yα; zα

X̃
, vα

X̃

)
on L(τ τ∗

)S (Lτ ∗
E) as

follows. If ωX̃ ∈ L(τ τ∗
)S (Lτ ∗

E)X̃(a), with a ∈ E, then (xi, yα) are the coordinates of a and

ωX̃ = zα

X̃
ẽX̃
α (X̃(a)) + vα

X̃
ēX̃
α (X̃(a)).

Moreover, if ([[·, ·]]S, ρS) is the Lie algebroid structure on the vector bundleL(τ τ∗
)S (Lτ ∗

E) → S

then, using (2.13), (2.14), (3.2) and (7.5), we obtain that[[
ẽX̃
α , ẽX̃

β

]]S = C
γ

αβ ẽX̃
γ ,

[[
ẽX̃
α , ēX̃

β

]]S = [[
ēX̃
α , ēX̃

β

]]S = 0,
(7.6)

ρS
(
ẽX̃
α

)
= (T X̃)

(
ρi

α

∂

∂xi

)
, ρS

(
ēX̃
α

)
= (T X̃)

(
∂

∂yα

)
,

for all α and β. Now, we consider the map �X̃ : LτE → L(τ τ∗
)S (Lτ ∗

E) defined by

�X̃(a, v) = ((a, (TX̃(b)(τ
τ ∗

)S)((TbX̃)(v))), (TbX̃)(v)),

for (a, v) ∈ (LτE)b ⊆ Eτ(b) × TbE, with b ∈ E. Note that τ ∗ ◦ (τ τ ∗
)S ◦ X̃ = τ and, thus,

(a, (TX̃(b)(τ
τ ∗

)S)((TbX̃)(v))) ∈ (Lτ ∗
E)(ττ∗

)S (X̃(b)) ⊆ Eτ(b) × Tττ∗
(X̃(b))E

∗ which implies that

((a, (TX̃(b)(τ
τ ∗

)S)((TbX̃)(v))), (TbX̃)(v)) ∈ L(τ τ∗
)S (Lτ ∗

E)X̃(b) ⊆ (Lτ ∗
E)(ττ∗

)S (X̃(b)) × TX̃(b)S.

Furthermore, if {T̃α, Vα} is the local basis of �(LτE) considered in remark 2.7 then a direct
computation, using (7.5), proves that

�X̃(T̃α(a)) = ẽX̃
α (X̃(a)), �X̃(Vα(a)) = ēX̃

α (X̃(a)), (7.7)

for all a ∈ τ−1(U). Therefore, from (2.33), (7.6) and (7.7), we conclude that the pair (�X̃, X̃)

is an isomorphism between the Lie algebroids LτE → E and L(τ τ∗
)S (Lτ ∗

E) → S. Note that
the local expression of �X̃ in the local coordinates (xi, yα; zα, vα) and

(
xi, yα; zα

X̃
, vα

X̃

)
on

LτE and L(τ τ∗
)S (Lτ ∗

E) is just the identity, that is,

�X̃(xi, yα; zα, vα) = (xi, yα; zα, vα).

We recall that if E is a symplectic Lie algebroid with symplectic section 	 then the
prolongation LτE of E over the vector bundle projection τ : E → M is a symplectic Lie
algebroid with symplectic section 	c, the complete lift of 	 (see section 6).

Proposition 7.6. Let (E, [[·, ·]], ρ) be a symplectic Lie algebroid with symplectic section
	 and X be a section of E. Denote by S the submanifold of E defined by S = X(E), by
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i : S → E the canonical inclusion, by αX the section of E∗ given by αX = iX	 and by
τS : S → M the map defined by τS = τ ◦ i, τ : E → M being the vector bundle projection.
Then, the Lie subalgebroid (Id, T i) : LτS

E → LτE, i : S → E of the symplectic Lie
algebroid ((LτE, [[·, ·]]τ , ρτ ),	c) is Lagrangian if and only if αX is a 1-cocycle.

Proof. Suppose that Y and Z are sections of E. Since 	 is a 2-cocycle, it follows that (see
(2.1))

dαX(Y,Z) = ρ(X)(	(Y,Z)) − 	(Y, [[X,Z]]) − 	([[X, Y ]], Z). (7.8)

On the other hand, using (6.3), we obtain that

	c(Y c − [[X, Y ]]v, Zc − [[X,Z]]v) = 	(Y,Z)c − 	(Y, [[X,Z]])v − 	([[X, Y ]], Z)v

which implies that (see (2.21))

	c(Y c − [[X, Y ]]v, Zc − [[X,Z]]v) ◦ X = ρ(X)(	(Y,Z)) − 	(Y, [[X,Z]]) − 	([[X, Y ]], Z).

(7.9)

Therefore, from (7.8), (7.9) and taking into account that the rank of LτS

E is n = 1
2 rank (LτE),

we conclude that the Lie subalgebroid (Id, T i) : LτS

E → LτE, i : S → E is Lagrangian if
and only if αX is a cocycle (see example 7.5, (i)). �

Remark 7.7. Let (M,	) be a symplectic manifold, τM : TM → M be the standard
symplectic Lie algebroid and X be a vector field on M. Then, the tangent bundle TM of M is a
symplectic manifold with symplectic form the complete lift 	c of 	 to TM (see remark 6.6).
Moreover, using remark 7.2 and proposition 7.6, we deduce a well-known result: the
submanifold X(M) of TM is Lagrangian if and only if X is a locally Hamiltonian vector
field of M.

Let (E, [[·, ·, ]], ρ) be a Lie algebroid over a manifold M and denote by 	E the canonical
symplectic section of the Lie algebroid (Lτ ∗

E, [[·, ·]]τ ∗
, ρτ ∗

) (see sections 3.1 and 3.2) and by
ρ∗(TE∗) → E the pull-back of the vector bundle T τ ∗ : TE∗ → TM over the anchor map
ρ : E → TM. As we know, ρ∗(TE∗) = Lτ ∗

E. Now, suppose that X̃ : E → ρ∗(TE∗) = Lτ ∗
E

is a section of ρ∗(TE∗) → E. Then, S = X̃(E) is a submanifold of Lτ ∗
E and one may

consider the Lie subalgebroid (Id, T i) : L(τ τ∗
)S (Lτ ∗

E) → Lτ τ∗
(Lτ ∗

E), i : S → Lτ ∗
E of the

symplectic Lie algebroid Lτ τ∗
(Lτ ∗

E) → Lτ ∗
E (see example 7.5, (ii)). We remark that the

symplectic section of Lτ τ∗
(Lτ ∗

E) → Lτ ∗
E is the complete lift 	c

E of 	E to the prolongation
of Lτ ∗

E over the bundle projection τ τ ∗
: Lτ ∗

E → E∗.
On the other hand, let AE : ρ∗(TE∗) → (LτE)∗ be the canonical isomorphism between

the vector bundles ρ∗(TE∗) → E and (LτE)∗ → E considered in section 5 (see (5.5)) and
αX̃ be the section of (LτE)∗ → E given by

αX̃ = AE ◦ X̃. (7.10)

Then, we have the following result.

Proposition 7.8. The Lie subalgebroid (Id, T i) : L(τ τ∗
)S (Lτ ∗

E) → Lτ τ∗
(Lτ ∗

E), i :
S → Lτ ∗

E is Lagrangian if and only if the section αX̃ is 1-cocycle of the Lie algebroid
(LτE, [[·, ·]]τ , ρτ ).

Proof. Suppose that (xi) are local coordinates on an open subset U of M and that {eα} is the
basis of the vector bundle τ−1(U) → U . Then, we will use the following notation:
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• {T̃α, Ṽα} (respectively, {ẽα, ēα}) is the local basis of �(LτE) (respectively, �(Lτ ∗
E))

considered in remark 2.7 (respectively, section 3.1). {T̃ α, Ṽ α} (respectively, {ẽα, ēα}) is
the dual basis of {T̃α, Ṽα} (respectively, {ẽα, ēα}).

• (xi, yα) (respectively, (xi, yα; zα, vα)) are the corresponding local coordinates on E
(respectively, Lτ ∗

E).
• ρi

α and C
γ

αβ are the structure functions of E with respect to (xi) and {eα}.
• �X̃ : LτE → L(τ τ∗

)S (Lτ ∗
E) is the isomorphism between the Lie algebroids LτE → E

and L(τ τ∗
)S (Lτ ∗

E) → S (over the map X̃ : E → S = X̃(E)) considered in example 7.5,
(ii).

Then, {
ẽc
α, ēc

α, ẽv
α, ēv

α

}
is a local basis of �(Lτ τ∗

(Lτ ∗
E)), where ẽc

α and ēc
α (respectively, ẽv

α and ēv
α) are the complete

(respectively, vertical) lifts of ẽα and ēα to Lτ τ∗
(Lτ ∗

E). Moreover,

{(ẽα)v, (ēα)v, (ẽα)c, (ēα)c}
is the dual basis of

{
ẽc
α, ēc

α, ẽv
α, ēv

α

}
.

Now, assume that the local expression of the section X̃ is

X̃(xi, yα) = (xi, X̃α; yα, X̃′α). (7.11)

Next, we consider the local basis
{
ẽX̃
α , ēX̃

α

}
of �

(
L(τ τ∗

)S (Lτ ∗
E)

)
given by (7.5). A direct

computation, using (2.23), (2.25), (3.2) and (7.5), proves that

ẽX̃
α (X̃(xi, yγ )) = ẽc

α(X̃(xi, yγ )) + ρi
α(xi)

∂X̃β

∂xi |(xi ,yγ )
ēc
β(X̃(xi, yγ ))

+ C
γ

αβ(xi)yβ ẽv
γ (X̃(xi, yγ )) + ρi

α(xi)
∂X̃′β

∂xi |(xi ,yγ )
ēv
β(X̃(xi, yγ )),

(7.12)

ēX̃
α (X̃(xi, yγ )) = ∂X̃β

∂yα |(xi ,yγ )

ēc
β(X̃(xi, yγ )) + ẽv

α(X̃(xi, yγ ))

+
∂X̃′β

∂yα |(xi ,yγ )

ēv
β(X̃(xi, yγ )).

Thus, if λE is the Liouville section of Lτ ∗
E → E then, from (6.8), (7.7) and (7.12), we

obtain that

((Id, T i) ◦ �X̃, i ◦ X̃)∗
(
λc

E

) = (
X̃′α + X̃βCβ

αγ yγ
)
T̃ α + X̃αṼ α.

Therefore, using (5.5), (7.10) and (7.11), it follows that

((Id, T i) ◦ �X̃, i ◦ X̃)∗
(
λc

E

) = αX̃.

Now, since 	c
E = (−dLτ∗

EλE)c = −dLττ∗
(Lτ∗

E)λc
E (see proposition 6.3), we have that

((Id, T i) ◦ �X̃, i ◦ X̃)∗
(
	c

E

) = −dLτ EαX̃. (7.13)

Note that the pair ((Id, T i) ◦�X̃, i ◦ X̃) is a morphism between the Lie algebroids LτE → E

and Lτ τ∗
(Lτ ∗

E) → Lτ ∗
E.

Consequently, using (7.13) and since the rank of the vector bundle L(τ τ∗
)S (Lτ ∗

E) → S is
2n, we deduce the result. �
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8. Lagrangian submanifolds, Tulczyjew’s triple and Euler–Lagrange (Hamilton)
equations

Let (E, [[·, ·]], ρ) be a symplectic Lie algebroid over a manifold M with symplectic section 	.
Then, the prolongation LτE of E over the vector bundle projection τ : E → M is a symplectic
Lie algebroid with symplectic section 	c, the complete lift of 	 to LτE (see theorem 6.5).

Definition 8.1. Let S be a submanifold of the symplectic Lie algebroid E and i : S → E be the
canonical inclusion. S is said to be Lagrangian if condition (7.3) holds and the corresponding
Lie subalgebroid (Id, T i) : LτS

E → LτE, i : S → E of the symplectic Lie algebroid
(LτE, [[·, ·]]τ , ρτ ) is Lagrangian.

Remark 8.2. Let M be a symplectic manifold with symplectic 2-form 	 and S be a
submanifold of M. Denote by i : S → M the canonical inclusion and by T i : T S → TM
the tangent map to i. Then, T i is an injective inmersion and T S is a submanifold of TM,
the standard Lie algebroid τM : TM → M is symplectic, the prolongation LτM (TM) of
τM : TM → M over τM is the standard Lie algebroid τTM : T (T (M)) → TM and 	c

is the usual complete lift of 	 to TM (see remark 6.4). Moreover, the Lie subalgebroid
(Id, T (T i)) : LτT S

M (TM) → LτM (TM) = T (TM), T i : T S → TM is just the standard Lie
algebroid τT S : T (T S) → T S. Thus, T S is a Lagrangian submanifold of TM in the sense
of definition 8.1 if and only if T S is a Lagrangian submanifold of the symplectic manifold
(TM,	c) in the usual sense (see remark 7.2). On the other hand, we have that

(T i)∗(	c) = (i∗(	))c, (8.1)

where (i∗(	))c is the usual complete lift of the 2-form i∗	 to T S. From (8.1), it follows that
T S is a Lagrangian submanifold of the symplectic manifold (TM,	c) in the usual sense if and
only if S is a Lagrangian submanifold of the symplectic manifold (M,	) in the usual sense.
Therefore, we conclude that the following conditions are equivalent:

(i) S is a Lagrangian submanifold of the symplectic manifold (M,	) in the usual sense.
(ii) T S is a Lagrangian submanifold of the symplectic manifold (TM,	c) in the usual sense.

(iii) T S is a Lagrangian submanifold of TM in the sense of definition 8.1.

From proposition 7.6, we deduce

Corollary 8.3. Let (E, [[·, ·]], ρ) be a symplectic Lie algebroid over a manifold M with
symplectic section 	 and X be a section of E. If αX is the section of E∗ given by

αX = iX	

and αX is a 1-cocycle of E then S = X(M) is a Lagrangian submanifold of E.

If (E, [[·, ·]], ρ) is a Lie algebroid over a manifold M, we will denote by ρ∗(TE∗) → E

the pull-back of the vector bundle T τ ∗ : TE∗ → TM over the anchor map ρ : E → TM,
by Lτ ∗

E the prolongation of E over the vector bundle projection τ ∗ : E∗ → M and by
AE : ρ∗(TE∗) → (LτE)∗ the isomorphism of vector bundles considered in section 5.

Using proposition 7.8, we have the following result

Corollary 8.4. Let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and X̃ be a section of
the vector bundle ρ∗(TE∗) → E. If αX̃ is the section of (LτE)∗ → E given by

αX̃ = AE ◦ X̃

and αX̃ is a 1-cocycle of Lie algebroid (LτE, [[·, ·]]τ , ρτ ) then S = X̃(E) is a Lagrangian
submanifold of the symplectic Lie algebroid Lτ ∗

E.
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Now, let (E, [[·, ·]], ρ) be a Lie algebroid over a manifold M and H : E∗ → R be a
Hamiltonian function. If 	E is the canonical symplectic section of Lτ ∗

E, then there exists a
unique section ξH of Lτ ∗

E → E∗ such that

iξH
	E = dLτ∗

EH.

Moreover, from corollary 8.3, we deduce that SH = ξH (E∗) is a Lagrangian submanifold of
Lτ ∗

E.
On the other hand, it is clear that there exists a bijective correspondence �H between the

set of curves in SH and the set of curves in E∗. In fact, if c : I → E∗ is a curve in E∗ then the
corresponding curve in SH is ξH ◦ c : I → SH .

A curve γ in SH ,

γ : I → SH ⊆ Lτ ∗
E ⊆ E × TE∗, t → (γ1(t), γ2(t))

is said to be admissible if the curve γ2 : I → TE∗, t → γ2(t), is a tangent lift, that is,

γ2(t) = ċ(t),

where c : I → E∗ is the curve in E∗ given by τE∗ ◦ γ2, τE∗ : TE∗ → E∗ being the canonical
projection.

Theorem 8.5. Under the bijection �H , the admissible curves in the Lagrangian submanifold
SH correspond with the solutions of the Hamilton equations for H.

Proof. Let γ : I → SH ⊆ Lτ ∗
E ⊆ E × TE∗ be an admissible curve in SH ,

γ (t) = (γ1(t), γ2(t)),

for all t. Then, γ2(t) = ċ(t), for all t, where c : I → E∗ is the curve in E∗ given by
c = τE∗ ◦ γ2.

Now, since ξH is a section of the vector bundle τ τ ∗
: Lτ ∗

E → E∗ and γ (I) ⊆ SH =
ξH (E∗), it follows that

ξH (c(t)) = γ (t), for all t (8.2)

that is, c = �H (γ ). Thus, from (8.2), we obtain that

ρτ ∗
(ξH ) ◦ c = γ2 = ċ,

that is, c is an integral curve of the vector field ρτ ∗
(ξH ) and, therefore, c is a solution of the

Hamilton equations associated with H (see section 3.3).
Conversely, assume that c : I → E∗ is a solution of the Hamilton equations associated

with H, that is, c is an integral curve of the vector field ρτ ∗
(ξH ) or, equivalently,

ρτ ∗
(ξH ) ◦ c = ċ. (8.3)

Then, γ = ξH ◦ c is a curve in SH and, from (8.3), we deduce that γ is admissible. �

Next, suppose that L : E → R is a Lagrangian function. Then, from corollary 8.4,
we obtain that SL = (

A−1
E ◦ dLτ EL

)
(E) is a Lagrangian submanifold of the symplectic Lie

algebroid Lτ ∗
E.

On the other hand, we have a bijective correspondence �L between the set of curves in
SL and the set of curves in E. In fact, if γ : I → SL is a curve in SL then there exists a unique
curve c : I → E in E such that

AE(γ (t)) = (dLτ EL)(c(t)), for all t.

Note that

pr1(γ (t)) = (τ τ )∗(AE(γ (t))) = (τ τ )∗((dLτ EL)(c(t))) = c(t), for all t,
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where pr1 : Lτ ∗
E ⊆ E × TE∗ → E is the canonical projection on the first factor and

(τ τ )∗ : (LτE)∗ → E is the vector bundle projection. Thus,

γ (t) = (c(t), γ2(t)) ∈ SL ⊆ Lτ ∗
E ⊆ E × TE∗, for all t.

A curve γ in SL

γ : I → SL ⊆ Lτ ∗
E ⊆ E × TE∗, t → (c(t), γ2(t))

is said to be admissible if the curve

γ2 : I → TE∗, t → γ2(t)

is a tangent lift, that is, γ2(t) = ċ∗(t), where c∗ : I → E∗ is the curve in E∗ given by
c∗ = τE∗ ◦ γ2.

Theorem 8.6. Under the bijection �L, the admissible curves in the Lagrangian submanifold
SL correspond with the solutions of the Euler–Lagrange equations for L.

Proof. Suppose that (xi) are local coordinates on M and that {eα} is a local basis of �(E).
Denote by (xi, yα) (respectively, (xi, yα) and (xi, yα; zα, vα)) the corresponding coordinates
on E (respectively, E∗ and Lτ ∗

E). Then, using (2.30), (2.32) and (5.5), it follows that the
submanifold SL is characterized by the following equations,

yα = ∂L

∂yα
, zα = yα, vα = ρi

α

∂L

∂xi
− C

γ

αβ

∂L

∂yγ
yβ, (8.4)

for all α ∈ {1, . . . , n}.
Now, let γ : I → SL be an admissible curve in SL

γ (t) = (c(t), γ2(t)) ∈ SL ⊆ Lτ ∗
E ⊆ E × TE∗, for all t

and denote by c∗ : I → E∗ the curve in E∗ satisfying

γ2(t) = ċ∗(t), for all t, (8.5)

i.e.,

c∗(t) = τE∗(γ2(t)), for all t. (8.6)

If the local expressions of γ and c are

γ (t) = (xi(t), yα(t); zα(t), vα(t)), c(t) = (xi(t), yα(t)),

then we have that

yα(t) = zα(t), for all α. (8.7)

Moreover, from (8.5) and (8.6), we deduce that

c∗(t) = (xi(t), yα(t)), γ2(t) = dxi

dt

∂

∂xi |c∗(t)
+

dyα

dt

∂

∂yα |c∗(t)
. (8.8)

Thus,

vα(t) = dyα

dt
, for all α. (8.9)

Therefore, using (8.4), (8.7), (8.8), (8.9) and the fact that ρ(c(t)) = (T τ ∗)(γ2(t)), it follows
that

dxi

dt
= ρi

αyα,
d

dt

(
∂L

∂yα

)
= ρi

α

∂L

∂xi
− C

γ

αβyβ ∂L

∂yγ
,

for all i and α, that is, c is a solution of the Euler–Lagrange equations for L.
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Conversely, let c : I → E be a solution of the Euler–Lagrange equations for L and
γ : I → SL be the corresponding curve in SL,

c = �L(γ ).

Suppose that

γ (t) = (c(t), γ2(t)) ∈ Lτ ∗
E ⊆ E × TE∗, for all t

and denote by c∗ : I → E∗ the curve in E∗ given by

c∗ = τE∗ ◦ γ2.

If the local expressions of γ and c are

γ (t) = (xi(t), yα(t); zα(t), vα(t)), c(t) = (xi(t), yα(t)),

then

yα(t) = zα(t), for all α (8.10)

and the local expressions of c∗ and γ2 are

c∗(t) = (xi(t), yα(t)), γ2(t) = zα(t)ρi
α(xj (t))

∂

∂xi |c∗(t)
+ vα(t)

∂

∂yα |c∗(t)
.

Thus, using (8.4) and the fact that c is a solution of the Euler–Lagrange equations for L, we
deduce that

γ2(t) = ċ∗(t), for all t,

which implies that γ is admissible. �

Now, assume that the Lagrangian function L : E → R is hyperregular and denote by
ωL,EL and ξL the Poincaré–Cartan 2-section, the energy function and the Euler–Lagrange
section associated with L, respectively. Then, ωL is a symplectic section of the Lie algebroid
(LτE, [[·, ·]]τ , ρτ ) and

iξL
ωL = dLτ EEL,

(see section 2.2.2). Moreover, from corollary 8.3, we deduce that

SξL
= ξL(E)

is a Lagrangian submanifold of the symplectic Lie algebroid LτE.
On the other hand, it is clear that there exists a bijective correspondence �SξL

between the
set of curves in SξL

and the set of curves in E.
A curve γ in SξL

γ : I → SξL
⊆ LτE ⊆ E × TE, t → (γ1(t), γ2(t)),

is said to be admissible if the curve

γ2 : I → TE, t → γ2(t)

is a tangent lift, that is,

γ2(t) = ċ(t), for all t,

where c : I → E is the curve in E defined by c = τE ◦ γ2, τE : TE → E being the canonical
projection.

Theorem 8.7. If the Lagrangian L is hyperregular then under the bijection ψSξL
the admissible

curves in the Lagrangian submanifold SξL
correspond with the solutions of the Euler–Lagrange

equations for L.
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Proof. Let γ : I → SξL
⊆ LτE ⊆ E × TE be an admissible curve in SξL

γ (t) = (γ1(t), γ2(t)), for all t.

Then,

γ2(t) = ċ(t), for all t,

where c : I → E is the curve in E given by c = τE ◦ γ2.
Now, since ξL is a section of the vector bundle τ τ : LτE → E and γ (I) ⊆ SξL

= ξL(E),
it follows that

ξL(c(t)) = γ (t), for all t (8.11)

that is, c = �SξL
(γ ).

Thus, from (8.11), we obtain that

ρτ (ξL) ◦ c = γ2 = ċ,

that is, c is an integral curve of the vector field ρτ (ξL) and, therefore, c is a solution of the
Euler–Lagrange equations associated with L (see section 2.2.2).

Conversely, assume that c : I → E is a solution of the Euler–Lagrange equations
associated with L, that is, c : I → E is an integral curve of the vector field ρτ (ξL) or,
equivalently,

ρτ (ξL) ◦ c = ċ. (8.12)

Then, γ = ξL ◦ c is a curve in SξL
and, from (8.12), we deduce that γ is admissible. �

If L : E → R is hyperregular then the Legendre transformation LegL : E → E∗ associated
with L is a global diffeomorphism and we may consider the Lie algebroid isomorphism
LLegL : LτE → Lτ ∗

E given by (3.25) and the Hamiltonian function H : E∗ → R defined
by H = EL ◦ Leg−1

L (see section 3.6).
Thus, we have:

• The Lagrangian submanifolds SL and SH of the symplectic Lie algebroid Lτ ∗
E.

• The Lagrangian submanifold SξL
of the symplectic Lie algebroid LτE.

Theorem 8.8. If the Lagrangian function L : E → R is hyperregular and H : E∗ → R

is the corresponding Hamiltonian function then the Lagrangian submanifolds SL and SH are
equal and

LLegL

(
SξL

) = SL = SH . (8.13)

Proof. Using (3.32), we obtain that

AE ◦ ξH ◦ LegL = AE ◦ LLegL ◦ ξL. (8.14)

Now, suppose that (xi) are local coordinates in M and that {eα} is a local basis of �(E).
Denote by (xi, yα) the corresponding coordinates on E and by (xi, yα; zα, vα) (respectively,
(xi, yα; zα, vα)) the corresponding ones on LτE (respectively, Lτ ∗

E). Then, from (2.42),
(3.26) and (5.5), we deduce that

(AE ◦ LLegL ◦ ξL)(xi, yα) =
(

xi, yα; ρi
α

∂L

∂xi
,

∂L

∂yα

)
.

Thus, from (2.36), it follows that

(AE ◦ LLegL ◦ ξL)(xi, yα) = dLτ EL(xi, yα),

that is (see (8.14)),

AE ◦ ξH ◦ LegL = dLτ EL.

Therefore, SL = SH . On the other hand, using (3.32), we obtain that (8.13) holds. �
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9. An application: Lagrangian submanifolds in prolongations of
Atiyah algebroids and Lagrange (Hamilton)–Poincaré equations

9.1. Prolongations of the Atiyah algebroid associated with a principal bundle

Let π : Q → M be a principal bundle with structural group G,φ : G × Q → Q be the
free action of G on Q and τQ|G : TQ/G → M be the Atiyah algebroid associated with
π : Q → M (see section 2.1.3).

The tangent action φT of G on TQ is free and thus, TQ is the total space of a principal
bundle over TQ/G with structural group G. The canonical projection πT : TQ → TQ/G is
just the bundle projection.

Now, let L(τQ|G)(TQ/G) be the prolongation of the Atiyah algebroid τQ|G : TQ/G → M

by the vector bundle projection τQ|G : TQ/G → M , and denote by (φT )T
∗

: G× T ∗(TQ) →
T ∗(TQ) the cotangent lift of the tangent action φT : G × TQ → TQ.

Theorem 9.1. Let π : Q → M be a principal bundle with structural group G and
τQ|G : TQ/G → M be the Atiyah algebroid associated with the principal bundle. Then:

(i) The Lie algebroid L(τQ|G)(TQ/G) and the Atiyah algebroid associated with the principal
bundle πT : TQ → TQ/G are isomorphic.

(ii) The dual vector bundle to L(τQ|G)(TQ/G) is isomorphic to the quotient vector bundle of
πTQ : T ∗(TQ) → TQ by the action (φT )T

∗
of G on T ∗(TQ).

Proof. (i) The Atiyah algebroid associated with the principal bundle πT : TQ → TQ/G is
the quotient vector bundle τTQ|G : T (TQ)/G → TQ/G of τTQ : T (TQ) → TQ by the action
(φT )T of G on T (TQ).

On the other hand, we have that the fibre of L(τQ|G)(TQ/G) over [uq] ∈ TQ/G is the
subspace of (TQ/G)π(q) × T[uq ](TQ/G) defined by

L(τQ|G)(TQ/G)[uq ] = {(
[vq], X[uq ]

) ∈ (TQ/G)π(q) × T[uq ](TQ/G)/

(Tqπ)(vq) = (
T[uq ](τQ|G)

)(
X[uq ]

)}
.

Now, we define the morphism (πT ◦T τQ, T πT ) between the vector bundles τTQ : T (TQ) → TQ
and (τQ|G)(τQ|G) : L(τQ|G)(TQ/G) → TQ/G over the map πT : TQ → TQ/G as follows,

(πT ◦ T τQ, T πT )
(
Xuq

) = (
πT

((
Tuq

τQ

)(
Xuq

))
,
(
Tuq

πT

)(
Xuq

))
(9.1)

for Xuq
∈ Tuq

(TQ), with uq ∈ TqQ.
Since the following diagram

TQ/G
τQ|G � M = Q/G

πT

�

π

�

TQ
τQ � Q

is commutative, one deduces that

(πT ◦ T τQ, T πT )
(
Xuq

) ∈ L(τQ|G)(TQ/G)[uq ]

and, thus, the map (πT ◦ T τQ, T πT ) is well-defined.
Next, we will proceed in two steps.
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First step. We will prove that the map (πT ◦ T τQ, T πT ) induces an isomorphism
˜(πT ◦ T τQ, T πT ) between the vector bundles τTQ|G : T (TQ)/G → TQ/G and (τQ|G)(τQ|G) :

L(τQ|G)(TQ/G) → TQ/G.

It is clear that

(πT ◦ T τQ, T πT )|Tuq (TQ) : Tuq
(TQ) → L(τQ|G)(TQ/G)[uq ]

is linear. In addition, this map is injective. In fact, if (πT ◦ T τQ, T πT )
(
Xuq

) = 0 then(
Tuq

πT

)(
Xuq

) = 0 and there exists ξ ∈ g ∼= TeG, e being the identity element of G, such that

Xuq
= (

Te(φ
T )uq

)
(ξ), (9.2)

where (φT )uq
: G → TQ is defined by

(φT )uq
(g) = (φT )g(uq) = (Tqφg)(uq), for g ∈ G.

Therefore, using that πT

((
Tuq

τQ

)(
Xuq

)) = 0, and hence
(
Tuq

τQ

)(
Xuq

) = 0, we have that

0 = Te

(
τQ ◦ (φT )uq

)
(ξ) = (Teφq)(ξ),

φq : G → Q being the injective immersion given by

φq(g) = φg(q) = φ(g, q), for g ∈ G.

Consequently, ξ = 0 and Xuq
= 0 (see (9.2)).

We have proved that the linear map (πT ◦ T τQ, T πT )|Tuq (TQ) is injective which implies
that (πT ◦ T τQ, T πT )|Tuq (TQ) is a linear isomorphism (note that the dimensions of the spaces
Tuq

(TQ) and L(τQ|G)(TQ/G)[uq ]) are equal).
Furthermore, since the following diagram

TQ
τQ � Q

φT
g = T φg

�

φg

�

TQ
τQ � Q����	





�
TQ/G

πT

πT

is commutative, we deduce that (πT ◦ T τQ, T πT ) induces a morphism ( ˜πT ◦ T τQ, T πT )

between the vector bundles τTQ|G : T (TQ)/G → TQ/G and (τQ|G)(τQ|G) :
L(τQ|G)(TQ/G) → TQ/G in such a way that the following diagram

T (TQ)/G

(πT )T

�

T (TQ)
(πT ◦ T τQ, T πT ) � L(τQ|G)(TQ/G)

���������������

( ˜πT ◦ T τQ, T πT )

is commutative, where (πT )T : T (TQ) → T (TQ)/G is the canonical projection. In addition,
if uq ∈ TqQ then, since the map

((πT )T )|Tuq (TQ) : Tuq
(TQ) → (T (TQ)/G)[uq ]
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is a linear isomorphism, we conclude that ˜(πT ◦ T τQ, T πT ) is a isomorphism between the
vector bundles τTQ|G : T (TQ)/G → TQ/G and (τQ|G)(τQ|G) : LτQ|G(TQ/G) → TQ/G.

Second step. We will prove that the map

˜(πT ◦ T τQ, T πT ) : T (TQ)/G → L(τQ|G)(TQ/G)

is an isomorphism between the Atiyah algebroid associated with the principal bundle
πT : TQ → TQ/G and L(τQ|G)(TQ/G).

Let A : TQ → g be a (principal) connection on the principal bundle π : Q → M = Q/G.
We choose a local trivialization of π : Q → M to be U × G, where U is an open subset of M.
Then, G acts on U × G as follows,

φ(g, (x, g′)) = (x, gg′), for g ∈ G and (x, g′) ∈ U × G. (9.3)

Assume that there are local coordinates (xi) on U and that {ξa} is a basis of g. Denote by
{
ξL
a

}
the corresponding left-invariant vector fields on G and suppose that

A

(
∂

∂xi |(x,e)

)
= Aa

i (x)ξa,

for i ∈ {1, . . . , m} and x ∈ U . Then, as we know (see remark 2.4), the vector fields on U ×G{
ei = ∂

∂xi
− Aa

i ξ
L
a , eb = ξL

b

}
define a local basis {e′

i , e
′
b} of �(TQ/G), such that πT ◦ ei = e′

i ◦ π , and πT ◦ eb = e′
b ◦ π .

Thus, one may consider the local coordinates (xi, ẋi , v̄b) on TQ/G induced by the local basis
{e′

i , e
′
b} and the corresponding local basis {T̃i , T̃b, Ṽi , Ṽb} of �(L(τQ|G)(TQ/G)). From (2.20)

and (2.31), we have that

T̃i[uq] =
(

e′
i (π(q)),

∂

∂xi |[uq ]

)
, T̃b[uq] = (e′

b(π(q)), 0),

(9.4)

Ṽi[uq] =
(

0,
∂

∂ẋi |[uq ]

)
, Ṽb[uq] =

(
0,

∂

∂v̄b |[uq ]

)
,

for uq ∈ TqQ, with q ∈ Q.
On the other hand, using the left translations by elements of G, one may identify the

tangent bundle to G,T G, with the product manifold G × g and, under this identification, the
tangent action of G on T (U × G) ∼= T U × T G ∼= T U × (G × g) is given by (see (9.3))

φT (g, (vx, (g
′, ξ))) = (vx, (gg′, ξ)),

for g ∈ G, vx ∈ TxU and (g′, ξ) ∈ G× g. Therefore, T (U ×G)/G ∼= T U × g and the vector
fields on T (U × G) ∼= T U × (G × g) defined by

X̃i = ∂

∂xi
− Aa

i ξ
L
a , X̃b = ξL

b ,

(9.5)
X̄i = ∂

∂ẋi
, X̄b = ∂

∂v̄b
,

are φT -invariant and they define a (local) basis of �(T (TQ)/G). Moreover, it follows that

T τQ ◦ X̃i = ei ◦ τQ, T τQ ◦ X̃b = eb ◦ τQ,

T τQ ◦ X̄i = 0, T τQ ◦ X̄b = 0,

T πT ◦ X̃i = ∂

∂xi
◦ πT , T πT ◦ X̃b = 0,

T πT ◦ X̄i = ∂

∂ẋi
◦ πT , T πT ◦ X̄b = ∂

∂v̄b
◦ πT .
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This implies that

(πT ◦ T τQ, T πT ) ◦ X̃i = T̃i ◦ πT , (πT ◦ T τQ, T πT ) ◦ X̃b = T̃b ◦ πT ,
(9.6)

(πT ◦ T τQ, T πT ) ◦ X̄i = Ṽi ◦ πT , (πT ◦ T τQ, T πT ) ◦ X̄b = Ṽb ◦ πT .

Furthermore, if cc
ab are the structure constants of g with respect to the basis {ξa}, B :

TQ ⊕ TQ → g is the curvature of A and

B

(
∂

∂xi |(x,e)
,

∂

∂xj |(x,e)

)
= Ba

ij (x)ξa, for x ∈ U,

then, a direct computation proves that,

[X̃i, X̃j ] = −Ba
ij X̃a, [X̃i, X̃a] = cc

abA
b
i X̃c, [X̃a, X̃b] = cc

abX̃c,

and the rest of the Lie brackets of the vector fields {X̃i, X̃a, X̄i, X̄a} are zero. Thus, from

(2.20) and (2.33), we conclude that ( ˜πT ◦ T τQ, T πT ) is a Lie algebroid isomorphism.
(ii) It follows using (i) and the results of section 2.1.3 (see example 2.3, (b)). �

Remark 9.2. As we know LτQ(TQ) ∼= T (TQ) (see remark 2.6). In addition, if {Xi,Xb} is
the local basis of �(TQ) = X(Q) given by

Xi = ∂

∂xi
− Aa

i ξ
L
a , Xb = ξL

b

then the corresponding (local) basis of �(LτQ(TQ)) ∼= �(T (TQ)) = X(TQ) is
{X̃i, X̃b, X̄i, X̄b}, where X̃i, X̃b, X̄i and X̄b are the local vector fields on T (U × G) ∼= T U ×
(G × g) defined by (9.5). One may deduce this result using (2.31), the fact that the anchor
map of τQ : TQ → Q is the identity and the following equalities

Xv
i = ∂

∂ẋi

, Xv
b = ∂

∂v̄b
,

where Xv
i (respectively Xv

b) is the vertical lift of Xi (respectively, Xb).

If π : Q → M is a principal bundle with structural group G and φ : G × Q → Q is the free
action of G on Q then, as we know (see section 2.1.3), the dual vector bundle to the Atiyah
algebroid τQ|G : TQ/G → M is isomorphic to the quotient vector bundle of the cotangent
bundle πQ : T ∗Q → Q by the cotangent action φT ∗

of G on T ∗Q, that is, the vector bundles
(τQ|G)∗ : (TQ/G)∗ → M and πQ|G : T ∗Q/G → M are isomorphic. Since φT ∗

is a free
action, T ∗Q is the total space of a principal bundle over T ∗Q/G with structural group G. The
canonical projection πT ∗ : T ∗Q → T ∗Q/G is just the bundle projection.

Now, denote by L(τQ|G)∗(TQ/G) the prolongation of the Atiyah algebroid τQ|G :
TQ/G → M by the vector bundle projection πQ|G : T ∗Q/G → M and by (φT ∗

)T
∗

:
G×T ∗(T ∗Q) → T ∗(T ∗Q) the cotangent lift of the cotangent action φT ∗

: G×T ∗Q → T ∗Q.

Theorem 9.3. Let π : Q → M be a principal bundle with structural group G and
τQ|G : TQ/G → M be the Atiyah algebroid associated with the principal bundle. Then:

(i) The Lie algebroid L(τQ|G)∗(TQ/G) and the Atiyah algebroid associated with the principal
bundle πT ∗ : T ∗Q → T ∗Q/G are isomorphic.

(ii) The dual vector bundle to L(τQ|G)∗(TQ/G) is isomorphic to the quotient vector bundle of
πT ∗Q : T ∗(T ∗Q) → T ∗Q by the action (φT ∗

)T
∗

of G on T ∗(T ∗Q).
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Proof. (i) The Atiyah algebroid associated with the principal bundle πT ∗ : T ∗Q → T ∗Q/G

is the quotient vector bundle τT ∗Q|G : T (T ∗Q)/G → T ∗Q/G of τT ∗Q : T (T ∗Q) → T ∗Q
by the action (φT ∗

)T of G on T (T ∗Q).
On the other hand, we have that the fibre of L(τQ|G)∗(TQ/G) over [αq] ∈ T ∗Q/G, with

αq ∈ T ∗
q Q, is the subspace of (TQ/G)π(q) × T[αq ](T

∗Q/G) defined by

L(τQ|G)∗(TQ/G)[αq ] = {(
[vq], X[αq ]

) ∈ (TQ/G)π(q) × T[αq ](T
∗Q/G)/

(Tqπ)(vq) = (
T[αq ](πQ|G)

)(
X[αq ]

)}
.

Now, we define the morphism (πT ◦ T πQ, T πT ∗) between the vector bundles τT ∗Q :
T (T ∗Q) → T ∗Q and (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G over the map πT ∗ :
T ∗Q → T ∗Q/G as follows,

(πT ◦ T πQ, T πT ∗)
(
Xαq

) = (
πT

((
Tαq

πQ

)(
Xαq

))
,
(
Tαq

πT ∗
)(

Xαq

))
(9.7)

for Xαq
∈ Tαq

(T ∗Q), with αq ∈ T ∗
q Q.

Since the following diagram

T ∗Q/G
πQ|G � M = Q/G

πT ∗

�

π

�

T ∗Q
πQ � Q

is commutative, one deduces that

(πT ◦ T πQ, T πT ∗)
(
Xαq

) ∈ L(τQ|G)∗(TQ/G)[αq ]

and, thus, the map (πT ◦ T πQ, T πT ∗) is well-defined.
If αq ∈ T ∗

q Q, we will denote by (φT ∗
)αq

: G → T ∗Q and by φq : G → Q the maps
given by

(�T ∗
)αq

(g) = (�T ∗
)g(αq) = (T ∗φg−1)(αq),

φq(g) = φg(q) = φ(g, q),

for g ∈ G. Then, proceeding as in the first step of the proof of theorem 9.1 and using that
πQ ◦ (φT ∗

)αq
= φq and the fact that the following diagram

T ∗Q
πQ � Q

φT ∗
g = T ∗φg−1

�

φg

�

T ∗Q
πQ � Q����	





�
T ∗Q/G

πT ∗

πT ∗

is commutative, we deduce that (πT ◦T πQ, T πT ∗) induces an isomorphism ( ˜πT ◦ T πQ, T πT ∗)

between the vector bundles τT ∗Q|G : T (T ∗Q)/G → T ∗Q/G and (τQ|G)(τQ|G)∗ :
L(τQ|G)∗(TQ/G) → T ∗Q/G.

On the other hand, proceeding as in the second step of the proof of theorem 9.1 and using

(2.20), (3.1) and (3.2), we conclude that ˜(πT ◦ T πQ, T πT ∗) is a Lie algebroid isomorphism.
(ii) It follows using (i) and the results of section 2.1.3 (see example 2.3, (b)). �
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9.2. Lagrangian submanifolds in prolongations of Atiyah algebroids
and Hamilton–Poincaré equations

Let π : Q → M be a principal bundle with structural group G, φ : G × Q → Q be the
free action of G on Q and τQ|G : TQ/G → M be the Atiyah algebroid associated with
the principal bundle π : Q → M . Then, the dual bundle to τQ|G : TQ/G → M may be
identified with the quotient vector bundle πQ|G : T ∗Q/G → M of the cotangent bundle
πQ : T ∗Q → Q by the cotangent action φT ∗

of G on T ∗Q.
Now, denote by (πT ◦ T πQ, T πT ∗) : T (T ∗Q) → L(τQ|G)∗(TQ/G) the map given by

(9.7). Then, the pair ((πT ◦ T πQ, T πT ∗), πT ∗) is a morphism between the vector bundles
τT ∗Q : T (T ∗Q) → T ∗Q and (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G. We remark
that LπQ(TQ) ∼= T (T ∗Q) and, thus, the Lie algebroids τT ∗Q : T (T ∗Q) → T ∗Q and
(τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G are symplectic (see section 3.2).

Theorem 9.4. (i) The pair ((πT ◦ T πQ, T πT ∗), πT ∗) is a symplectomorphism between the
symplectic Lie algebroids τT ∗Q : T (T ∗Q) → T ∗Q and (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) →
T ∗Q/G. In other words, we have:

(ia) The pair ((πT ◦ T πQ, T πT ∗), πT ∗) is a morphism between the Lie algebroids
τT ∗Q : T (T ∗Q) → T ∗Q and (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G.

(ib) If 	TQ (respectively, 	TQ/G) is the canonical symplectic section of τT ∗Q : T (T ∗Q) →
T ∗Q (respectively, (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G) then

((πT ◦ T πQ, T πT ∗), πT ∗)∗(	TQ/G) = 	TQ. (9.8)

(ii) Let h : T ∗Q/G → R be a Hamiltonian function and H : T ∗Q → R be the
corresponding G-invariant Hamiltonian on T ∗Q

H = h ◦ πT ∗ . (9.9)

If ξH ∈ �(T (T ∗Q)) ∼= X(T ∗Q) (respectively, ξh ∈ �(L(τQ|G)∗(TQ/G))) is the Hamiltonian
section associated with H (respectively, h) then

(πT ◦ T πQ, T πT ∗) ◦ ξH = ξh ◦ πT ∗ .

Proof. (i) We consider the Atiyah algebroid τT ∗Q|G : T (T ∗Q)/G → T ∗Q/G associated
with the principal bundle πT ∗ : T ∗Q → T ∗Q/G. If πT T ∗ : T (T ∗Q) → T (T ∗Q)/G is
the canonical projection, we have that the pair (πT T ∗ , πT ∗) is a Lie algebroid morphism (see
section 2.1.3).

Now, denote by ˜(πT ◦ T πQ, T πT ∗) : T (T ∗Q)/G → L(τQ|G)∗(TQ/G) the isomorphism
between the Lie algebroids τT ∗Q|G : T (T ∗Q)/G → T ∗Q/G and (τQ|G)(τQ|G)∗ :
L(τQ|G)∗(TQ/G) → T ∗Q/G considered in the proof of theorem 9.3. It follows that

(πT ◦ T πQ, T πT ∗) = ˜(πT ◦ T πQ, T πT ∗) ◦ πT T ∗ .

This proves (ia).
Next, we will prove (ib). If λTQ (respectively, λTQ/G) is the Liouville section of

τT ∗Q : T (T ∗Q) → T ∗Q (respectively, (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G) then,
using (3.4) and (9.7), we deduce that

((πT ◦ T πQ, T πT ∗), πT ∗)∗(λTQ/G) = λTQ.

Thus, from (ia) and since 	TQ/G = −dL(τQ |G)∗
(TQ/G)λTQ/G and 	TQ = −dT (T ∗Q)λTQ, we

conclude that

((πT ◦ T πQ, T πT ∗), πT ∗)∗(	TQ/G) = 	TQ.
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(ii) Using (ia) and (9.9), we obtain that

((πT ◦ T πQ, T πT ∗), πT ∗)∗
(
dL(τQ |G)∗

(TQ/G)h
) = dT (T ∗Q)H. (9.10)

Therefore, from (3.10), (9.8) and (9.10), it follows that(
i(πT ◦T πQ,T πT ∗ )(ξH (αq ))	TQ/G(πT ∗(αq))

)(
(πT ◦ T πQ, T πT ∗)

(
Xαq

))
= (

iξh(πT ∗ (αq ))	TQ/G(πT ∗(αq))
)(

(πT ◦ T πQ, T πT ∗)
(
Xαq

))
,

for αq ∈ T ∗
q Q and Xαq

∈ Tαq
(T ∗Q). This implies that

(πT ◦ T πQ, T πT ∗)(ξH (αq)) = ξh(πT ∗(αq)). �

Now, we prove the following result.

Corollary 9.5. Let h : T ∗Q/G → R be a Hamiltonian function and H : T ∗Q → R be
the corresponding G-invariant Hamiltonian on T ∗Q. Then, the solutions of the Hamilton
equations for h are just the solutions of the Hamilton–Poincaré equations for H.

Proof. We will give two proofs.

First proof (as a consequence of theorem 9.4). Let ρ be the anchor map of the
Atiyah algebroid τQ|G : TQ/G → M and ρ(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T (T ∗Q/G)

be the anchor map of the Lie algebroid L(τQ|G)∗(TQ/G). Using theorem 9.4, we deduce
that the vector field ξH ∈ X(T ∗Q) is πT ∗ -projectable on the vector field ρ(τQ|G)∗(ξh) ∈
X(T ∗Q/G). Thus, the projections, via πT ∗ , of the integral curves of ξH are the
integral curves of the vector field ρ(τQ|G)∗(ξh). But, the integral curves of ξH and
ρ(τQ|G)∗(ξh) are the solutions of the Hamilton equations for H and h, respectively (see
section 3.3). Finally, since the projections (via πT ∗ ) of the solutions of the Hamilton equations
for H are the solutions of the Hamilton–Poincaré equations for H (see [5]) the result follows.

Second proof (a direct local proof). Let A : TQ → g be a (principal) connection on the
principal bundle π : Q → M and B : TQ ⊕ TQ → g be the curvature of A. We choose a
local trivialization of π : Q → M to be U × G, where U is an open subset of M such that
there are local coordinates (xi) on U. Suppose that {ξa} is a basis of g, that cc

ab are the structure
constants of g with respect to the basis {ξa} and that Aa

i (respectively, Ba
ij ) are the components

of A (respectively, B) with respect to the local coordinates (xi) and the basis {ξa} (see (2.18)).
Denote by {ei, ea} the local basis of G-invariant vector fields on Q given by (2.17), by

(xi, ẋi , v̄a) the corresponding local fibred coordinates on TQ/G and by (xi, pi, p̄a) the (dual)
local fibred coordinates on T ∗Q/G. Then, using (2.20) and (3.12), we derive the Hamilton
equations for h

dxi

dt
= ∂h

∂pi

,
dpi

dt
= − ∂h

∂xi
+ Ba

ij p̄a

∂h

∂pj

− cc
abA

b
i p̄c

∂h

∂p̄a

,

dp̄a

dt
= cc

abA
b
i p̄c

∂h

∂pi

− cc
abp̄c

∂h

∂p̄b

,

which are just the Hamilton–Poincaré equations associated with the G-invariant Hamiltonian
H (see [5]). �

As we know (see section 3.1), the local basis {ei, ea} of �(TQ) induces a local basis
{ẽi , ẽa, ēi , ēa} of �(L(τQ|G)∗(TQ/G)) and we may consider the corresponding local coordinates
(xi, yi, ya; zi, za, vi, va) on L(τQ|G)∗(TQ/G) (see again section 3.1).
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Since the Lie algebroids (τQ|G)(τQ|G)∗ : L(τQ|G)∗(TQ/G) → T ∗Q/G and τT ∗Q|G :
T (T ∗Q)/G → T ∗Q/G are isomorphic and L(τQ|G)∗(TQ/G) ⊆ TQ/G × T (T ∗Q/G), we
will adopt the following notation for the above coordinates:

(xi, pi, p̄a; ẋi , v̄a, ṗi , ˙̄pa).

We recall that (xi, ẋi , v̄
a) and (xi, pi, p̄a) are the local coordinates on TQ/G and T ∗Q/G,

respectively (see the second proof of corollary 9.5).
Next, using the coordinates (xi, pi, p̄a; ẋi , v̄a, ṗi , ˙̄pa), we will obtain the local equations

defining the Lagrangian submanifold Sh = ξh(T
∗Q/G) of the symplectic Lie algebroid

(L(τQ|G)∗(TQ/G),	TQ/G), h : T ∗Q/G → R being a Hamiltonian function.
Using (2.20) and (3.11), we deduce that the local expression of ξh is

ξh(x
i, pi, p̄a) = ∂h

∂pi

ẽi +
∂h

∂p̄a

ẽa −
(

∂h

∂xi
− Ba

ij p̄a

∂h

∂pj

− ca
bdA

b
i p̄a

∂h

∂p̄d

)
ēi

+

(
cc
abA

b
i p̄c

∂h

∂pi

− cc
abp̄c

∂h

∂p̄b

)
ēa. (9.11)

Thus, the local equations defining the submanifold Sh are

v̄a = ∂h

∂p̄a

,

ẋi = ∂h

∂pi

, ṗi = −
(

∂h

∂xi
− Ba

ij p̄a

∂h

∂pj

− ca
bdA

b
i p̄a

∂h

∂p̄d

)
,

˙̄pa = cc
abA

b
i p̄c

∂h

∂pi

− cc
abp̄c

∂h

∂p̄b

,

or, in other words,

v̄a = ∂h

∂p̄a

, (9.12)

dxi

dt
= ∂h

∂pi

,
dpi

dt
= −

(
∂h

∂xi
− Ba

ij p̄a

∂h

∂pj

− ca
bdA

b
i p̄a

∂h

∂p̄d

)
,

dp̄a

dt
= cc

abA
b
i p̄c

∂h

∂pi

− cc
abp̄c

∂h

∂p̄b

. (9.13)

Equations (9.12) give the definition of the components of the locked body angular velocity (in
the terminology of [2]) and equations (9.13) are just the Hamilton–Poincaré equations for the
G-invariant Hamiltonian H = h ◦ πT ∗ .

Finally, we will discuss the relation between the solutions of the Hamilton–Jacobi equation
for the Hamiltonians h and H.

Suppose that α ∈ �(T ∗Q/G) is a 1-cocycle of the Atiyah algebroid τQ|G : TQ/G →
M = Q/G. Then, since the pair (πT , π) is a morphism between the Lie algebroids
τQ : TQ → Q and τQ|G : TQ/G → M = Q/G (see section 2.1.3), we deduce that
the section α̃ ∈ �(T ∗Q) given by

α̃ = (πT , π)∗α, (9.14)

is also a 1-cocycle or, in other words, α̃ is a closed 1-form on Q. It is clear that α̃

is G-invariant. Conversely, if α̃ is a G-invariant closed 1-form on Q then, using that
(πT )|TqQ : TqQ → (TQ/G)π(q) is a linear isomorphism, for all q ∈ Q, we deduce that
there exists a unique 1-cocycle α ∈ �(T ∗Q/G) of the Atiyah algebroid τQ|G : TQ/G → M

such that (9.14) holds.
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Proposition 9.6. There exists a one-to-one correspondence between the solutions of
the Hamilton–Jacobi equation for h and the G-invariant solutions of the Hamilton–Jacobi
equation for H.

Proof. We recall that a 1-cocycle α ∈ �(T ∗Q/G) (respectively, α̃ ∈ �(T ∗Q)) is a solution
of the Hamilton–Jacobi equation for h (respectively, H) if dTQ/G(h ◦ α) = 0 (respectively,
dTQ(H ◦ α̃) = 0).

Now, assume that α is a 1-cocycle of the Atiyah algebroid τQ|G : TQ/G → M and
denote by α̃ the cocycle defined by (9.14). We obtain that

πT ∗ ◦ dTQ(H ◦ α̃) = dTQ/G(h ◦ α) ◦ π.

Thus, using that

πT ∗|T ∗
q Q : T ∗

q Q → (T ∗Q/G)π(q)

is a linear isomorphism, for all q ∈ Q, we conclude that

dTQ/G(h ◦ α) = 0 ⇔ dTQ(H ◦ α̃) = 0

which proves the result. �

9.3. Lagrangian submanifolds in prolongations of Atiyah algebroids and
Lagrange–Poincaré equations

Let π : Q → M be a principal bundle with structural group G, τQ|G : TQ/G → M be the
Atiyah algebroid associated with the principal bundle π : Q → M and πT : TQ → TQ/G be
the canonical projection.

Theorem 9.7. The solutions of the Euler–Lagrange equations for a Lagrangian l : TQ/G →
R are the solutions of the Lagrange–Poincaré equations for the corresponding G-invariant
Lagrangian L given by L = l ◦ πT .

Proof. Let A : TQ → g be a (principal) connection on the principal bundle π : Q → M

and B : TQ ⊕ TQ → g be the curvature of A. We choose a local trivialization of π : Q → M

to be U × G, where U is an open subset on M such that there are local coordinates (xi) on
U. Suppose that {ξa} is a basis of g, that cc

ab are the structure constants of g with respect to
the basis {ξa} and that Aa

i (respectively, Ba
ij ) are the components of A (respectively, B) with

respect to the local coordinates (xi) and the basis {ξa} (see (2.18)).
Denote by {ei, ea} the local basis of G-invariant vector fields on Q given by (2.17) and

by (xi, ẋi , v̄a) the corresponding local fibred coordinates on TQ/G. Then, using (2.20) and
(2.40), we derive the Euler–Lagrange equations for l

∂l

∂xj
− d

dt

(
∂l

∂ẋj

)
= ∂l

∂v̄a

(
Ba

ij ẋ
i + ca

dbA
b
j v̄

d
)
, for all j,

d

dt

(
∂l

∂v̄b

)
= ∂l

∂v̄a

(
ca
dbv̄

d − ca
dbA

d
i ẋ

i
)
, for all b,

which are just the Lagrange–Poincaré equations associated with the G-invariant Lagrangian
L (see [6]). �

Now, let ATQ/G : L(τQ|G)∗(TQ/G) ≡ ρ∗(T (T ∗Q/G)) → L(τQ|G)(TQ/G)∗ be the
isomorphism between the vector bundles pr1 : ρ∗(T (T ∗Q/G)) ≡ L(τQ|G)∗(TQ/G) → TQ/G

and ((τQ|G)(τQ|G))∗ : L(τQ|G)(TQ/G)∗ → TQ/G defined in section 5 (see (5.5)) and 	TQ/G be
the canonical symplectic section associated with the Atiyah algebroid τQ|G : TQ/G → M .
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Next, we will obtain the local equations defining the Lagrangian submanifold Sl =(
A−1

TQ/G ◦ dL(τQ |G)
(TQ/G)l

)
(TQ/G) of the symplectic Lie algebroid (L(τQ|G)∗(TQ/G),	TQ/G).

The local basis {ei, ea} induces a local basis {T̃i , T̃a, Ṽi , Ṽa} of �(L(τQ|G)(TQ/G)) (see
remark 2.7) and we may consider the corresponding local coordinates (xi, ẋi , v̄a; zi, za, vi, va)

on L(τQ|G)(TQ/G) (see again remark 2.7). We will denote by (xi, ẋi , v̄a; zi, za, vi, va) the
dual coordinates on the dual bundle L(τQ|G)(TQ/G)∗ to L(τQ|G)(TQ/G).

On the other hand, we will use the notation of section 9.2 for the local coordinates on
L(τQ|G)∗(TQ/G), that is, (xi, pi, p̄a; ẋi , v̄a, ṗi , ˙̄pa).

Then, from (2.20), (2.36) and (5.5), we deduce that(
dL(τQ |G)

(TQ/G)l
)
(xi, ẋi , v̄a) = ∂l

∂xi
T̃ i +

∂l

∂ẋi
Ṽ i +

∂l

∂v̄a
Ṽ a,

A−1
TQ/G(xi, ẋi , v̄a; zi, za, vi, va) = (

xi, vi, va; ẋi , v̄a, zi + Bc
ij ẋ

j vc − cc
abA

b
i vcv̄

a,

za − cc
abv̄

bvc + cc
abA

b
j ẋ

j vc

)
,

where {T̃ i , T̃ a, Ṽ i , Ṽ a} is the dual basis of {T̃i , T̃a, Ṽi , Ṽa}.
Thus, the local equations defining the Lagrangian submanifold Sl of the symplectic Lie

algebroid (L(τQ|G)∗(TQ/G),	TQ/G) are

pi = ∂l

∂ẋi
, p̄a = ∂l

∂v̄a
,

ṗi = ∂l

∂xi
+ Ba

ij ẋ
j ∂l

∂v̄a
− ca

dbA
b
i v̄

d ∂l

∂v̄a
,

˙̄pb = ∂l

∂v̄a

(
ca
dbv̄

d − ca
dbA

d
i ẋ

i
)
,

or, in other words,

pi = ∂l

∂ẋi
, p̄a = ∂l

∂v̄a
, (9.15)

∂l

∂xj
− dpj

dt
= p̄a

(
Ba

ij ẋ
i + ca

dbA
b
j v̄

d
)
,

(9.16)
dpb

dt
= p̄a

(
ca
dbv̄

d − Ad
i c

a
dbẋ

i
)
.

Equations (9.15) give the definition of the momenta and equations (9.16) are just the Lagrange–
Poincaré equations for the G-invariant Lagrangian L.

Now, let (πT ◦ T τQ, T πT ) : T (TQ) → L(τQ|G)(TQ/G) be the map given by (9.1).
Then, the pair ((πT ◦ T τQ, T πT ), πT ) is a morphism between the vector bundles τTQ :
T (TQ) → TQ and (τQ|G)(τQ|G) : L(τQ|G)(TQ/G) → TQ/G. We recall that the Lie algebroids
τTQ : T (TQ) → TQ and τ

τQ

Q : LτQ(TQ) → TQ are isomorphic.

Theorem 9.8. (i) The pair ((πT ◦T τQ, T πT ), πT ) is a morphism between the Lie algebroids
τTQ ∼= τ

τQ

Q : T (TQ) ∼= LτQ(TQ) → TQ and(τQ|G)(τQ|G) : L(τQ|G)(TQ/G) → TQ/G.
(ii) Let l : TQ/G → R be a Lagrangian function and L : TQ → R be the

corresponding G-invariant Lagrangian on TQ, L = l ◦ πT . If ωl ∈ �(∧2(L(τQ|G)(TQ/G)∗))
and El ∈ C∞(TQ/G) (respectively, ωL ∈ �(∧2(LτQ(TQ)∗)) ∼= �(∧2(T ∗(TQ))) and
EL ∈ C∞(TQ)) are the Poincaré–Cartan 2-section and the Lagrangian energy associated
with l (respectively, L) then

((πT ◦ T τQ, T πT ), πT )∗(ωl) = ωL, (9.17)

El ◦ πT = EL. (9.18)
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(iii) If Legl : TQ/G → T ∗Q/G (respectively, LegL : TQ → T ∗Q) is the Legendre
transformation associated with l (respectively, L) then

Legl ◦ πT = πT ∗ ◦ LegL,

that is, the following diagram is commutative

TQ/G
Legl � T ∗Q/G

πT

�

πT ∗

�

TQ
LegL � T ∗Q

Proof. (i) We consider the Atiyah algebroid τTQ|G : T (TQ)/G → TQ/G associated with
the principal bundle πT : TQ → TQ/G. If πT T : T (TQ) → T (TQ)/G is the canonical
projection, we have that the pair (πT T , πT ) is a Lie algebroid morphism (see section 2.1.3).

Now, denote by ˜(πT ◦ T τQ, T πT ) : T (TQ)/G → L(τQ|G)(TQ/G) the isomorphism
between the Lie algebroids τTQ|G : T (TQ)/G → TQ/G and (τQ|G)(τQ|G) :
L(τQ|G)(TQ/G) → TQ/G considered in the proof of theorem 9.1. It follows that

(πT ◦ T τQ, T πT ) = ˜(πT ◦ T τQ, T πT ) ◦ πT T .

This proves (i).
(ii) From (2.35), (9.6) and remark 9.2, we deduce that the following diagram is

commutative

L(τQ|G)(TQ/G)
STQ/G

� L(τQ|G)(TQ/G)

(πT ◦ T τQ, T πT )

�

(πT ◦ T τQ, T πT )

�

T (TQ)
STQ

� T (TQ)

where STQ (respectively, STQ/G) is the vertical endomorphism associated with the Lie algebroid
τQ : TQ → Q (respectively, the Atiyah algebroid τQ|G : TQ/G → M). Thus, if θL

(respectively, θl) is the Poincaré–Cartan 1-section associated with L (respectively, l) then,
using the first part of the theorem, (2.37) and the fact that L = l ◦ πT , we obtain that

((πT ◦ T τQ, T πT ), πT )∗(θl) = θL. (9.19)

Therefore, using again the first part of the theorem and (2.38), it follows that

((πT ◦ T τQ, T πT ), πT )∗(ωl) = ωL.

On the other hand, from (2.29), (9.6) and remark 9.2, we have the following diagram is
commutative

TQ/G
�TQ/G

� L(τQ|G)(TQ/G)

πT

�

(πT ◦ T τQ, T πT )

�

TQ
�TQ

� T (TQ)
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where �TQ (respectively, �TQ/G) is the Euler section associated with the Lie algebroid
τQ : TQ → Q (respectively, the Atiyah algebroid τQ|G : TQ/G → M). Consequently,
using the first part of the theorem and the fact that L = l ◦ πT , we conclude that

El ◦ πT = EL.

(iii) From (3.23) and (9.19), we deduce the result. �

Now we prove the following

Corollary 9.9. Let l : TQ/G → R be a Lagrangian function and L : TQ → R be the
corresponding G-invariant Lagrangian on TQ, L = l ◦ πT . Then, L is regular if and only if l
is regular.

Proof. The map

(πT ◦ T τQ, T πT )|Tvq (TQ) : Tvq
(TQ) → L(τQ|G)(TQ/G)[vq ]

is a linear isomorphism, for all vq ∈ TqQ (see the proof of theorem 9.1).
On the other hand, L (respectively, l) is regular if and only if ωL (respectively, ωl) is a

symplectic section of τTQ : T (TQ) → TQ (respectively, (τQ|G)(τQ|G) : L(τQ|G)(TQ/G) →
TQ/G).

Thus, using (9.17), the result follows. �

Assume that the Lagrangian function l : TQ/G → R is regular and denote by
ξl ∈ �(L(τQ|G)(TQ/G)) the Euler–Lagrange section associated with l. We recall that ξl is
characterized by the equation

iξl
ωl = dL(τQ |G)

(TQ/G)El.

Next, we will obtain the local equations defining the Lagrangian submanifold Sξl
=

ξl(TQ/G) of the symplectic Lie algebroid
(
L(τQ|G)(TQ/G), ωc

l

)
, ωc

l being the complete lift of
ωl .

Let A : TQ → g be a (principal) connection on the principal bundle π : Q → M and
B : TQ ⊕ TQ → g be the curvature of A. We choose a local trivialization of π : Q → M

to be U × G, where U is an open subset of M such that there are local coordinates (xi) on
U. Suppose that {ξa} is a basis of g, that cc

ab are the structure constants of g with respect to
the basis {ξa} and that Aa

i (respectively, Ba
ij ) are the components of A (respectively, B) with

respect to the local coordinates (xi) and the basis {ξa} (see (2.18)).
Denote by {ei, ea} the local basis of G-invariant vector fields on Q given by (2.17)

and by (xi, ẋi , v̄a) the corresponding local fibred coordinates on TQ/G. {ei, ea} induces a
local basis {T̃i , T̃a, Ṽi , Ṽa} of �(L(τQ|G)(TQ/G)) (see (9.4)) and we have the corresponding
local coordinates (xi, ẋi , v̄a; zi, za, vi, va) on L(τQ|G)(TQ/G). Since the vector bundles
τTQ|G : T (TQ)/G → TQ/G and (τQ|G)(τQ|G) : L(τQ|G)(TQ/G) → TQ/G are isomorphic
(see theorem 9.1), we will adopt the following notation for the above coordinates

(xi, ẋi , v̄a; zi, za, ẍi , ˙̄va
).

Now, we consider the regular matrix

(
Wij Wia

Wai Wab

)
=


∂2l

∂ẋi∂ẋj

∂2l

∂ẋi∂v̄a

∂2l

∂v̄a∂ẋi

∂2l

∂v̄a∂v̄b
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and denote by (
Wij Wia

Wai Wab

)
the inverse matrix. Then, from (2.20) and (2.42), we deduce that

ξl = ẋi T̃i + v̄aT̃a + (Wij (ξl)j + Wia(ξl)a)Ṽi + (Wai(ξl)i + Wab(ξl)b)Ṽa, (9.20)

where

(ξl)i = ∂l

∂xi
− ∂2l

∂xj ∂ẋi
ẋj +

∂l

∂v̄a

(
Ba

ij ẋ
j + ca

bd v̄
bAd

i

)
,

(9.21)

(ξl)b = − ∂2l

∂xi∂v̄b
ẋi +

∂l

∂v̄c

(
cc
bdA

d
i ẋ

i + cc
abv̄

a
)
.

Thus, using the coordinates (xi, ẋi , v̄a; zi, za, ẍi , ˙̄va
), we obtain that the local equations

defining the Lagrangian submanifold Sξl
are

zi = ẋi , za = v̄a, (9.22)

ẍi = Wij (ξl)j + Wib(ξl)b, ˙̄va = Waj (ξl)j + Wab(ξl)b. (9.23)

From (9.21) and (9.23), we conclude that
∂l

∂xj
− d

dt

(
∂l

∂ẋj

)
= ∂l

∂v̄a

(
Ba

ij ẋ
i + ca

dbv̄
dAb

j

)
,

d

dt

(
∂l

∂v̄b

)
= ∂l

∂v̄a

(
ca
dbv̄

d − ca
dbA

d
i ẋ

i
)
,

which are just the Lagrange–Poincaré equations associated with the G-invariant Lagrangian
L = l ◦ πT .

9.4. A particular example: Wong’s equations

To illustrate the theory that we have developed in this section, we will consider an interesting
example, that of Wong’s equations. Wong’s equations arise in at least two different interesting
contexts. The first of these concerns the dynamics of a coloured particle in a Yang–Mills field
and the second one is that of the falling cat theorem (see [37–39]; see also [6] and references
quoted therein).

Let (M, gM) be a given Riemannian manifold, G be a compact Lie group with a
bi-invariant Riemannian metric κ and π : Q → M be a principal bundle with structure
group G. Suppose that g is the Lie algebra of G, that A : TQ → g is a principal connection on
Q and that B : TQ ⊕ TQ → g is the curvature of A.

If q ∈ Q then, using the connection A, one may prove that the tangent space to Q at
q, TqQ, is isomorphic to the vector space g ⊕ Tπ(q)M . Thus, κ and gM induce a Riemannian
metric gQ on Q and we can consider the kinetic energy L : TQ → R associated with gQ. The
Lagrangian L is given by

L(vq) = 1
2 (κe(A(vq), A(vq)) + gπ(q)((Tqπ)(vq), (Tqπ)(vq))),

for vq ∈ TqQ, e being the identity element in G. It is clear that L is hyperregular and
G-invariant.

On the other hand, since the Riemannian metric gQ is also G-invariant, it induces a fibre
metric gTQ/G on the quotient vector bundle τQ|G : TQ/G → M = Q/G. The reduced
Lagrangian l : TQ/G → R is just the kinetic energy of the fibre metric gTQ/G, that is,

l[vq] = 1
2 (κe(A(vq), A(vq)) + gπ(q)((Tqπ)(vq), (Tqπ)(vq))),

for vq ∈ TqQ.
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We have that l is hyperregular. In fact, the Legendre transformation associated with l is
just the vector bundle isomorphism �gTQ/G

between TQ/G and T ∗Q/G induced by the fibre
metric gTQ/G. Thus, the reduced Hamiltonian h : T ∗Q/G → R is given by

h[αq] = l
(
�−1
gTQ/G

[αq]
)

for αq ∈ T ∗
q Q.

Now, we choose a local trivialization of π : Q → M to be U × G, where U is an open
subset of M such that there are local coordinates (xi) on U. Suppose that {ξa} is a basis of g,
that cc

ab are the structure constants of g with respect to the basis {ξa}, that Aa
i (respectively,

Ba
ij ) are the components of A (respectively, B) with respect to the local coordinates (xi) and

the basis {ξa} (see (2.18)) and that

κe = κabξ
a ⊗ ξb, g = gij dxi ⊗ dxj ,

where {ξa} is the dual basis to {ξa}. Note that since κ is a bi-invariant metric on G, it follows
that

cc
abκcd = cc

adκcb. (9.24)

Denote by {ei, ea} the local basis of G-invariant vector fields on Q given by (2.17), by
(xi, ẋi , v̄a) the corresponding local fibred coordinates on TQ/G and by (xi, pi, p̄a) the (dual)
coordinates on T ∗Q/G. We have that

l(xi, ẋi , v̄a) = 1
2 (κabv̄

av̄b + gij ẋ
i ẋj ), (9.25)

h(xi, pi, p̄a) = 1
2 (κabp̄ap̄b + gijpipj ), (9.26)

where (κab) (respectively, (gij )) is the inverse matrix of (κab) (respectively, (gij )). Thus, the
Hessian matrix of l,Wl , is(

gij 0
0 κab

)
and the inverse matrix of Wl is(

gij 0
0 κab

)
The local basis {ei, ea} induces a local basis {ẽi , ẽa, ēi , ēa} of �(L(τQ|G)∗(TQ/G)) and we may
consider the corresponding local coordinates

(xi, pi, p̄a; ẋi , v̄a, ṗi , ˙̄pa)

on L(τQ|G)∗(TQ/G) (see section 9.2).
From (9.24) and (9.26), we deduce that

cc
abp̄c

∂h

∂p̄b

= cc
abκ

dbp̄cp̄d = 0.

Thus, the local expression of the Hamiltonian section ξh of L(τQ|G)∗(TQ/G) is (see (9.11) and
(9.26))

ξh(x
i, pi, p̄a) = (gijpj )ẽi + (κbcp̄c)ẽb −

(
1
2

∂gjk

∂xi
pjpk − Ba

ij p̄ag
jkpk

)
ēi

− (
cc
abA

a
i p̄cg

ijpj

)
ēb.
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Therefore, the local equations defining the Lagrangian submanifold Sl = Sh = ξh(T
∗Q/G)

are

ẋi = gijpj , v̄b = κbcp̄c, for all i and b,

ṗi = −1

2

∂gjk

∂xi
pjpk − p̄aB

a
jig

jkpk, for all i,

˙̄pb = −ca
dbA

d
i p̄ag

ijpj , for all b

or, in other words,

ẋi = gijpj , v̄b = κbcp̄c, for all i and b,

dpi

dt
= −1

2

∂gjk

∂xi
pjpk − p̄aB

a
jig

jkpk, for all i, (9.27)

dp̄b

dt
= −ca

dbA
d
i p̄aẋ

i , for all b. (9.28)

Equations (9.27) (respectively, equations (9.28)) are the second (respectively, first) Wong
equation (see [6]).

On the other hand, the local basis {ei, ea} induces a local basis {T̃i , T̃a, Ṽi , Ṽa} of
�(L(τQ|G)(TQ/G)) and we may consider the corresponding local coordinates

(xi, ẋi , v̄a; zi, za, ẍi , ˙̄va
)

on L(τQ|G)(TQ/G) (see section 9.3).
From (9.20), (9.21), (9.24) and (9.25), we obtain that the Euler–Lagrange section ξl

associated with l is given by

ξl(x
k, ẋk, v̄c) = ẋi T̃i + v̄bT̃b + gij

(
1

2

∂gkl

∂xj
ẋkẋl − ∂gjk

∂xl
ẋkẋl + κabv̄

bBa
jkẋ

k

)
Ṽi

+
(
cb
acv̄

aAc
i ẋ

i
)
Ṽb.

Thus, the local equations defining the Lagrangian submanifold Sξl
= ξl(TQ/G) of

L(τQ|G)(TQ/G) are

zi = ẋi , zb = v̄b, for all i and b,

ẍi = gij

(
1

2

∂gkl

∂xj
ẋkẋl − ∂gjk

∂xl
ẋkẋl + κabv̄

bBa
jkẋ

k

)
, for all i, (9.29)

˙̄vb = cb
acv̄

aAc
i ẋ

i , for all b. (9.30)

Now, put

p̄b = κbcv̄
c, pi = gij ẋ

j ,

for all b and i.
Then, from (9.24) and (9.30), it follows that

dp̄b

dt
= −p̄ac

a
dbA

d
i ẋ

i , for all b,

which is the first Wong equation. In addition, since (gij ) is the inverse matrix of (gij ), we
deduce that

∂gkl

∂xj
ẋkẋl = −∂gkl

∂xj
pkpl.

Therefore, using (9.24) and (9.29), we conclude that

dpi

dt
= −1

2

∂gjk

∂xi
pjpk − p̄aB

a
jig

jkpk, for all i,

which is the second Wong equation.
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10. Future work

In this section, we propose several problems related to the topics discussed in this paper, which
we are working on nowadays or which study will be carried out in the near future:

• Mechanics on Lie algebroids. In section 3.7, we introduced the Hamilton–Jacobi equation
for a Hamiltonian system on a Lie algebroid and we proved that knowing one solution of
the Hamilton–Jacobi equation simplifies the search of trajectories for the corresponding
Hamiltonian vector field. So, it would be interesting to continue our inquiries about
the Hamilton–Jacobi theory for Hamiltonian systems on Lie algebroids. In particular, it
would be interesting to introduce a suitable definition of a local (global) complete integral
of the Hamilton–Jacobi equation in such a way that knowing an integral of the equation
permits a ‘direct determination’ of some integral curves of the corresponding Hamiltonian
vector field.

Other goal we have proposed is to develop a geometric formalism for nonholonomic
mechanics on Lie algebroids (see [7]). In addition, it would be interesting to develop a
geometric formalism for vakonomic mechanics and its applications to control theory. In
this direction, in [8] the authors study the accessibility and controllability of mechanical
control systems on Lie algebroids. This class of systems includes mechanical systems
subject to nonholonomic constraints. Moreover, in [31] a geometric setting for the
Pontryagin maximum principle in optimal control theory and in the framework of Lie
algebroids is provided. This gives a way to study reduction by symmetry groups of the
maximum principle. More recently, in [36] the authors consider Lagrangian systems on
Lie algebroids with linear nonholonomic constraints.

• Mechanics on Lie affgebroids. In [35] (see also [15, 16, 32, 41]) the authors proposed a
possible generalization of the notion of a Lie algebroid to affine bundles in order to build
a geometrical model for a time-dependent version of Lagrange (Hamilton) equations on
Lie algebroids. The resultant mathematical structures are called Lie affgebroids in the
terminology of [15]. More recently, in [27], it was proved that a Lie affgebroid and a
Hamiltonian section on it induce an analogous to Tulczyjew’s triple associated with a Lie
algebroid. This construction may be applied in order to give some interesting descriptions
of Lagrangian (Hamiltonian) mechanics on Lie affgebroids (see [18]). Symplectic Lie
affgebroids and Lagrangian submanifolds of them play an important role in this theory.
On the other hand, the notion of a Lagrangian submanifold of a symplectic Lie affgebroid
could be used in order to develop a Hamilton–Jacobi theory on Lie affgebroids.

A different aspect we can work on it is nonholonomic and vakonomic mechanics on
Lie affgebroids.

• Discrete mechanics on Lie groupoids. In his paper, Weinstein [50] introduced the discrete
Euler–Lagrange equations for a Lagrangian function L : G → R on a Lie groupoid G. The
solutions of these equations are the extremals for a variational principle. In addition, these
equations may be considered as the discrete version of the Euler–Lagrange equations on
Lie algebroids. Note that Lie algebroids are the infinitesimal invariants of Lie groupoids.
After introducing the discrete Euler–Lagrange equations, Weinstein poses the question
of developing a Lagrangian (Hamiltonian) formalism on general Lie groupoids. Some
progress has been made in that direction (see [28]). In fact, if L : G → R is a discrete
Lagrangian, we have proved that the appropriate spaces in order to develop the above
formalisms are the prolongation of order 1 of G (in the sense of Saunders [42]) and
the prolongation of the Lie algebroid τ : AG → M associated with G over the vector
bundle projection τ ∗ : A∗G → M (for more details, see [28]). Probably, the above
formalisms will allow us to deal with other problems such as the construction of a discrete
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analogue for Lie groupoids of the Tulczyjew’s triple associated with a Lie algebroid.
This construction could be used in order to give some interesting descriptions of discrete
mechanics on Lie groupoids. We also expect to study numerical aspects of the theory.
Finally, another interesting goal could be to develop a discrete version of the Lagrangian
(Hamiltonian) formalism on Lie affgebroids.

• Classical field theory and Lie algebroids. Recently, Martı́nez [33] (see also [34])
formulated the classical field theory in the setting of Lie algebroids using a multisymplectic
approach. He considered an epimorphism of Lie algebroids π : E → F and an affine
bundle Jπ associated with π . Jπ is the space where the Lagrangian formalism is based.
Jπ is the set of the linear maps from a fibre of F to a fibre of E which are sections of the
projection π . In the affine dual of Jπ there exists a canonical multisymplectic section,
which allows us to define a Hamiltonian formalism. This general setting includes several
physical theories as particular cases.

On the other hand, as we have previously said, in [32, 35] the authors have introduced
the notion of a Lie affgebroid structure and developed a Lagrangian (Hamiltonian)
formalism on Lie affgebroids, which generalizes some classical formalisms for time-
dependent mechanics and, in addition, it may be applied to other situations. Since
time-dependent mechanics is a one-dimensional field theory, it would be interesting to
define the notion of a ‘Lie multialgebroid’, as a generalization of the notion of a Lie
affgebroid, in such a way that this mathematical object encodes the geometric structure
necessary to develop field theories. The first example of a Lie multialgebroid should be
Jπ . The notion of a Lie multialgebroid will possibly allow us to study other aspects of
the theory as Tulczyjew’s triples associated with a Lie multialgebroid and Hamilton–
Jacobi equation for classical field theories on Lie multialgebroids among others.
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[15] Grabowska K, Grabowski J and Urbański P 2003 Lie brackets on affine bundles Ann. Global Anal. Geom. 24

101–30
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